Visualization of stem cell activity in pancreatic cancer expansion by direct lineage tracing with live imaging

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Although rigorous efforts identified the presence of 'cancer stem cells (CSCs)' in PDAC and molecular markers for them, stem cell dynamics in vivo have not been clearly demonstrated. Here we focused on Doublecortin-like kinase 1 (Dclk1), known as a CSC marker of PDAC. Using genetic lineage tracing with a dual-recombinase system and live imaging, we showed that Dclk1+ tumor cells continuously provided progeny cells within pancreatic intraepithelial neoplasia, primary and metastatic PDAC and PDAC-derived spheroids in vivo and in vitro. Furthermore, genes associated with CSC and epithelial mesenchymal transition were enriched in mouse Dclk1+ and human DCLK1-high PDAC cells. Thus, we provided direct functional evidence for the stem cell activity of Dclk1+ cells in vivo, revealing the essential roles of Dclk1+ cells in expansion of pancreatic neoplasia in all progressive stages.

Data availability

Microarray data have been deposited in GEO under accession codes GSE139167.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Takahisa Maruno

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7060-4104
  2. Akihisa Fukuda

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    For correspondence
    fukuda26@kuhp.kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1940-596X
  3. Norihiro Goto

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Motoyuki Tsuda

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Kozo Ikuta

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Yukiko Hiramatsu

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Satoshi Ogawa

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuki Nakanishi

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuichi Yamaga

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Takuto Yoshioka

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Kyoichi Takaori

    Hepatobiliary-Pancreatic Surgery and Transplantation, Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Shinji Uemoto

    Hepatobiliary-Pancreatic Surgery and Transplantation, Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Dieter Saur

    Internal Medicine II, Klinikum rechts der Isar Technische Universität München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Tsutomu Chiba

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  15. Hiroshi Seno

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    For correspondence
    seno@kuhp.kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Funding

Grants-in-Aid KAKENHI (26293173)

  • Hiroshi Seno

Naito Foundation (N/A)

  • Hiroshi Seno

Princess Takamatsu Cancer Research Fund (13-24514)

  • Tsutomu Chiba

Princess Takamatsu Cancer Research Fund (17-24924)

  • Hiroshi Seno

Takeda Science Foundation (201749741)

  • Hiroshi Seno

Uehara Memorial Foundation (201720143)

  • Hiroshi Seno

Mochida Foundation (201356)

  • Tsutomu Chiba

Mochida Foundation (2017bvAg)

  • Hiroshi Seno

Mitsubishi Foudation (281119)

  • Hiroshi Seno

Mitsubishi Foudation (201910037)

  • Hiroshi Seno

European Research Council (648521)

  • Dieter Saur

Grants-in-Aid KAKENHI (15H06334)

  • Takahisa Maruno

Deutsche Forschungsgemeinschaft (1374/4-2)

  • Dieter Saur

Grants-in-Aid KAKENHI (16K09394)

  • Akihisa Fukuda

Grants-in-Aid KAKENHI (16K15427)

  • Hiroshi Seno

Grants-in-Aid KAKENHI (17H04157)

  • Hiroshi Seno

Grants-in-Aid KAKENHI (19H03639)

  • Akihisa Fukuda

apan Agency for Medical Research and Development (19cm0106142h0002)

  • Hiroshi Seno

apan Agency for Medical Research and Development (19cm6010022h0002)

  • Akihisa Fukuda

Kobayashi Foundation for Cancer Research (N/A)

  • Hiroshi Seno

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by the animal research committee of the Kyoto University and performed in accordance with Japanese government regulations. All surgery was performed under Isoflurane anesthesia, and every effort was made to minimize suffering.

Human subjects: Surgically resected specimens of pancreatic cancer tissues were obtained from patients who had been admitted to Kyoto University Hospital. Written informed consent was obtained from all patients and study protocol (#G1200-1) was approved by Ethics Committee of Kyoto University Hospital.

Copyright

© 2021, Maruno et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,568
    views
  • 507
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Takahisa Maruno
  2. Akihisa Fukuda
  3. Norihiro Goto
  4. Motoyuki Tsuda
  5. Kozo Ikuta
  6. Yukiko Hiramatsu
  7. Satoshi Ogawa
  8. Yuki Nakanishi
  9. Yuichi Yamaga
  10. Takuto Yoshioka
  11. Kyoichi Takaori
  12. Shinji Uemoto
  13. Dieter Saur
  14. Tsutomu Chiba
  15. Hiroshi Seno
(2021)
Visualization of stem cell activity in pancreatic cancer expansion by direct lineage tracing with live imaging
eLife 10:e55117.
https://doi.org/10.7554/eLife.55117

Share this article

https://doi.org/10.7554/eLife.55117

Further reading

    1. Cancer Biology
    2. Immunology and Inflammation
    Sofia V Krasik, Ekaterina A Bryushkova ... Ekaterina O Serebrovskaya
    Research Article

    The current understanding of humoral immune response in cancer patients suggests that tumors may be infiltrated with diffuse B cells of extra-tumoral origin or may develop organized lymphoid structures, where somatic hypermutation and antigen-driven selection occur locally. These processes are believed to be significantly influenced by the tumor microenvironment through secretory factors and biased cell-cell interactions. To explore the manifestation of this influence, we used deep unbiased immunoglobulin profiling and systematically characterized the relationships between B cells in circulation, draining lymph nodes (draining LNs), and tumors in 14 patients with three human cancers. We demonstrated that draining LNs are differentially involved in the interaction with the tumor site, and that significant heterogeneity exists even between different parts of a single lymph node (LN). Next, we confirmed and elaborated upon previous observations regarding intratumoral immunoglobulin heterogeneity. We identified B cell receptor (BCR) clonotypes that were expanded in tumors relative to draining LNs and blood and observed that these tumor-expanded clonotypes were less hypermutated than non-expanded (ubiquitous) clonotypes. Furthermore, we observed a shift in the properties of complementarity-determining region 3 of the BCR heavy chain (CDR-H3) towards less mature and less specific BCR repertoire in tumor-infiltrating B-cells compared to circulating B-cells, which may indicate less stringent control for antibody-producing B cell development in tumor microenvironment (TME). In addition, we found repertoire-level evidence that B-cells may be selected according to their CDR-H3 physicochemical properties before they activate somatic hypermutation (SHM). Altogether, our work outlines a broad picture of the differences in the tumor BCR repertoire relative to non-tumor tissues and points to the unexpected features of the SHM process.

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.