Visualization of stem cell activity in pancreatic cancer expansion by direct lineage tracing with live imaging

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Although rigorous efforts identified the presence of 'cancer stem cells (CSCs)' in PDAC and molecular markers for them, stem cell dynamics in vivo have not been clearly demonstrated. Here we focused on Doublecortin-like kinase 1 (Dclk1), known as a CSC marker of PDAC. Using genetic lineage tracing with a dual-recombinase system and live imaging, we showed that Dclk1+ tumor cells continuously provided progeny cells within pancreatic intraepithelial neoplasia, primary and metastatic PDAC and PDAC-derived spheroids in vivo and in vitro. Furthermore, genes associated with CSC and epithelial mesenchymal transition were enriched in mouse Dclk1+ and human DCLK1-high PDAC cells. Thus, we provided direct functional evidence for the stem cell activity of Dclk1+ cells in vivo, revealing the essential roles of Dclk1+ cells in expansion of pancreatic neoplasia in all progressive stages.

Data availability

Microarray data have been deposited in GEO under accession codes GSE139167.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Takahisa Maruno

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7060-4104
  2. Akihisa Fukuda

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    For correspondence
    fukuda26@kuhp.kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1940-596X
  3. Norihiro Goto

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Motoyuki Tsuda

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Kozo Ikuta

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Yukiko Hiramatsu

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Satoshi Ogawa

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuki Nakanishi

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Yuichi Yamaga

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Takuto Yoshioka

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Kyoichi Takaori

    Hepatobiliary-Pancreatic Surgery and Transplantation, Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Shinji Uemoto

    Hepatobiliary-Pancreatic Surgery and Transplantation, Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  13. Dieter Saur

    Internal Medicine II, Klinikum rechts der Isar Technische Universität München, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Tsutomu Chiba

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  15. Hiroshi Seno

    Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
    For correspondence
    seno@kuhp.kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Funding

Grants-in-Aid KAKENHI (26293173)

  • Hiroshi Seno

Naito Foundation (N/A)

  • Hiroshi Seno

Princess Takamatsu Cancer Research Fund (13-24514)

  • Tsutomu Chiba

Princess Takamatsu Cancer Research Fund (17-24924)

  • Hiroshi Seno

Takeda Science Foundation (201749741)

  • Hiroshi Seno

Uehara Memorial Foundation (201720143)

  • Hiroshi Seno

Mochida Foundation (201356)

  • Tsutomu Chiba

Mochida Foundation (2017bvAg)

  • Hiroshi Seno

Mitsubishi Foudation (281119)

  • Hiroshi Seno

Mitsubishi Foudation (201910037)

  • Hiroshi Seno

European Research Council (648521)

  • Dieter Saur

Grants-in-Aid KAKENHI (15H06334)

  • Takahisa Maruno

Deutsche Forschungsgemeinschaft (1374/4-2)

  • Dieter Saur

Grants-in-Aid KAKENHI (16K09394)

  • Akihisa Fukuda

Grants-in-Aid KAKENHI (16K15427)

  • Hiroshi Seno

Grants-in-Aid KAKENHI (17H04157)

  • Hiroshi Seno

Grants-in-Aid KAKENHI (19H03639)

  • Akihisa Fukuda

apan Agency for Medical Research and Development (19cm0106142h0002)

  • Hiroshi Seno

apan Agency for Medical Research and Development (19cm6010022h0002)

  • Akihisa Fukuda

Kobayashi Foundation for Cancer Research (N/A)

  • Hiroshi Seno

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kay F Macleod, University of Chicago, United States

Ethics

Animal experimentation: All animal experiments were approved by the animal research committee of the Kyoto University and performed in accordance with Japanese government regulations. All surgery was performed under Isoflurane anesthesia, and every effort was made to minimize suffering.

Human subjects: Surgically resected specimens of pancreatic cancer tissues were obtained from patients who had been admitted to Kyoto University Hospital. Written informed consent was obtained from all patients and study protocol (#G1200-1) was approved by Ethics Committee of Kyoto University Hospital.

Version history

  1. Received: January 13, 2020
  2. Accepted: November 24, 2020
  3. Accepted Manuscript published: January 4, 2021 (version 1)
  4. Version of Record published: January 11, 2021 (version 2)

Copyright

© 2021, Maruno et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,307
    views
  • 484
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Takahisa Maruno
  2. Akihisa Fukuda
  3. Norihiro Goto
  4. Motoyuki Tsuda
  5. Kozo Ikuta
  6. Yukiko Hiramatsu
  7. Satoshi Ogawa
  8. Yuki Nakanishi
  9. Yuichi Yamaga
  10. Takuto Yoshioka
  11. Kyoichi Takaori
  12. Shinji Uemoto
  13. Dieter Saur
  14. Tsutomu Chiba
  15. Hiroshi Seno
(2021)
Visualization of stem cell activity in pancreatic cancer expansion by direct lineage tracing with live imaging
eLife 10:e55117.
https://doi.org/10.7554/eLife.55117

Share this article

https://doi.org/10.7554/eLife.55117

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Kevin Nuno, Armon Azizi ... Ravindra Majeti
    Research Article

    Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.