Visualization of stem cell activity in pancreatic cancer expansion by direct lineage tracing with live imaging
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Although rigorous efforts identified the presence of 'cancer stem cells (CSCs)' in PDAC and molecular markers for them, stem cell dynamics in vivo have not been clearly demonstrated. Here we focused on Doublecortin-like kinase 1 (Dclk1), known as a CSC marker of PDAC. Using genetic lineage tracing with a dual-recombinase system and live imaging, we showed that Dclk1+ tumor cells continuously provided progeny cells within pancreatic intraepithelial neoplasia, primary and metastatic PDAC and PDAC-derived spheroids in vivo and in vitro. Furthermore, genes associated with CSC and epithelial mesenchymal transition were enriched in mouse Dclk1+ and human DCLK1-high PDAC cells. Thus, we provided direct functional evidence for the stem cell activity of Dclk1+ cells in vivo, revealing the essential roles of Dclk1+ cells in expansion of pancreatic neoplasia in all progressive stages.
Data availability
Microarray data have been deposited in GEO under accession codes GSE139167.
-
Gene expression profiles of Dclk1+ and Dclk1- PDAC cellsNCBI Gene Expression Omnibus, GSE139167.
-
Expression data from Mayo Clinic Pancreatic Tumor and Normal samplesNCBI Gene Expression Omnibus, GSE16515.
-
Integrative Survival-Based Molecular Profiling of Human Pancreatic CancerNCBI Gene Expression Omnibus, GSE32676.
Article and author information
Author details
Funding
Grants-in-Aid KAKENHI (26293173)
- Hiroshi Seno
Naito Foundation (N/A)
- Hiroshi Seno
Princess Takamatsu Cancer Research Fund (13-24514)
- Tsutomu Chiba
Princess Takamatsu Cancer Research Fund (17-24924)
- Hiroshi Seno
Takeda Science Foundation (201749741)
- Hiroshi Seno
Uehara Memorial Foundation (201720143)
- Hiroshi Seno
Mochida Foundation (201356)
- Tsutomu Chiba
Mochida Foundation (2017bvAg)
- Hiroshi Seno
Mitsubishi Foudation (281119)
- Hiroshi Seno
Mitsubishi Foudation (201910037)
- Hiroshi Seno
European Research Council (648521)
- Dieter Saur
Grants-in-Aid KAKENHI (15H06334)
- Takahisa Maruno
Deutsche Forschungsgemeinschaft (1374/4-2)
- Dieter Saur
Grants-in-Aid KAKENHI (16K09394)
- Akihisa Fukuda
Grants-in-Aid KAKENHI (16K15427)
- Hiroshi Seno
Grants-in-Aid KAKENHI (17H04157)
- Hiroshi Seno
Grants-in-Aid KAKENHI (19H03639)
- Akihisa Fukuda
apan Agency for Medical Research and Development (19cm0106142h0002)
- Hiroshi Seno
apan Agency for Medical Research and Development (19cm6010022h0002)
- Akihisa Fukuda
Kobayashi Foundation for Cancer Research (N/A)
- Hiroshi Seno
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal experiments were approved by the animal research committee of the Kyoto University and performed in accordance with Japanese government regulations. All surgery was performed under Isoflurane anesthesia, and every effort was made to minimize suffering.
Human subjects: Surgically resected specimens of pancreatic cancer tissues were obtained from patients who had been admitted to Kyoto University Hospital. Written informed consent was obtained from all patients and study protocol (#G1200-1) was approved by Ethics Committee of Kyoto University Hospital.
Copyright
© 2021, Maruno et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,526
- views
-
- 499
- downloads
-
- 21
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Evolutionary Biology
In growing cell populations such as tumours, mutations can serve as markers that allow tracking the past evolution from current samples. The genomic analyses of bulk samples and samples from multiple regions have shed light on the evolutionary forces acting on tumours. However, little is known empirically on the spatio-temporal dynamics of tumour evolution. Here, we leverage published data from resected hepatocellular carcinomas, each with several hundred samples taken in two and three dimensions. Using spatial metrics of evolution, we find that tumour cells grow predominantly uniformly within the tumour volume instead of at the surface. We determine how mutations and cells are dispersed throughout the tumour and how cell death contributes to the overall tumour growth. Our methods shed light on the early evolution of tumours in vivo and can be applied to high-resolution data in the emerging field of spatial biology.
-
- Cancer Biology
- Evolutionary Biology
In asexual populations that don’t undergo recombination, such as cancer, deleterious mutations are expected to accrue readily due to genome-wide linkage between mutations. Despite this mutational load of often thousands of deleterious mutations, many tumors thrive. How tumors survive the damaging consequences of this mutational load is not well understood. Here, we investigate the functional consequences of mutational load in 10,295 human tumors by quantifying their phenotypic response through changes in gene expression. Using a generalized linear mixed model (GLMM), we find that high mutational load tumors up-regulate proteostasis machinery related to the mitigation and prevention of protein misfolding. We replicate these expression responses in cancer cell lines and show that the viability in high mutational load cancer cells is strongly dependent on complexes that degrade and refold proteins. This indicates that the upregulation of proteostasis machinery is causally important for high mutational burden tumors and uncovers new therapeutic vulnerabilities.