1. Developmental Biology
  2. Stem Cells and Regenerative Medicine
Download icon

Zebrafish embryonic explants undergo genetically encoded self-assembly

  1. Alexandra Schauer
  2. Diana Pinheiro
  3. Robert Hauschild
  4. Carl-Philipp Heisenberg  Is a corresponding author
  1. Institute of Science and Technology Austria, Austria
Research Article
  • Cited 18
  • Views 4,252
  • Annotations
Cite this article as: eLife 2020;9:e55190 doi: 10.7554/eLife.55190

Abstract

Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona-fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order.

Data availability

All data generated and analyzed in the manuscript are provided as Source Data Files. The Custom Script used has been uploaded as Source code 1.

Article and author information

Author details

  1. Alexandra Schauer

    Life Sciences, Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Diana Pinheiro

    Life Sciences, Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert Hauschild

    Life Sciences, Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9843-3522
  4. Carl-Philipp Heisenberg

    Life Sciences, Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    heisenberg@ist.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0912-4566

Funding

H2020 European Research Council (MECSPEC742573)

  • Carl-Philipp Heisenberg

Austrian Academy of Sciences

  • Alexandra Schauer

European Molecular Biology Organization (850-2017)

  • Diana Pinheiro

Human Frontier Science Program (LT000429/2018-L2)

  • Diana Pinheiro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments in this study were performed in strict accordance with the guidelines of the Ethics and Animal Welfare Committee (ETK) in Austria. The respective approval number that covers the performed experiments is 66.018/0010-WF/II/3b/2014.

Reviewing Editor

  1. Ashley Bruce

Publication history

  1. Received: January 15, 2020
  2. Accepted: April 5, 2020
  3. Accepted Manuscript published: April 6, 2020 (version 1)
  4. Version of Record published: April 29, 2020 (version 2)

Copyright

© 2020, Schauer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,252
    Page views
  • 724
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Soyeon Lim et al.
    Research Article

    Retinal progenitor cells (RPCs) divide in limited numbers to generate the cells comprising vertebrate retina. The molecular mechanism that leads RPC to the division limit, however, remains elusive. Here, we find that the hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) in an RPC subset by deletion of tuberous sclerosis complex 1 (Tsc1) makes the RPCs arrive at the division limit precociously and produce Müller glia (MG) that degenerate from senescence-associated cell death. We further show the hyperproliferation of Tsc1-deficient RPCs and the degeneration of MG in the mouse retina disappear by concomitant deletion of hypoxia-induced factor 1-a (Hif1a), which induces glycolytic gene expression to support mTORC1-induced RPC proliferation. Collectively, our results suggest that, by having mTORC1 constitutively active, an RPC divides and exhausts mitotic capacity faster than neighboring RPCs, and thus produces retinal cells that degenerate with aging-related changes.

    1. Developmental Biology
    2. Neuroscience
    Tania Moreno-Mármol et al.
    Research Article Updated

    The vertebrate eye primordium consists of a pseudostratified neuroepithelium, the optic vesicle (OV), in which cells acquire neural retina or retinal pigment epithelium (RPE) fates. As these fates arise, the OV assumes a cup shape, influenced by mechanical forces generated within the neural retina. Whether the RPE passively adapts to retinal changes or actively contributes to OV morphogenesis remains unexplored. We generated a zebrafish Tg(E1-bhlhe40:GFP) line to track RPE morphogenesis and interrogate its participation in OV folding. We show that, in virtual absence of proliferation, RPE cells stretch and flatten, thereby matching the retinal curvature and promoting OV folding. Localized interference with the RPE cytoskeleton disrupts tissue stretching and OV folding. Thus, extreme RPE flattening and accelerated differentiation are efficient solutions adopted by fast-developing species to enable timely optic cup formation. This mechanism differs in amniotes, in which proliferation drives RPE expansion with a much-reduced need of cell flattening.