The visual pigment xenopsin is widespread in protostome eyes and impacts the view on eye evolution

Abstract

Photoreceptor cells in the eyes of Bilateria are often classified into microvillar cells with rhabdomeric opsin and ciliary cells with ciliary opsin, each type having specialized molecular components and physiology. First data on the recently discovered xenopsin point towards a more complex situation in protostomes. In this study, we provide clear evidence that xenopsin enters cilia in the eye of the larval bryozoan Tricellaria inopinata and triggers phototaxis. As reported from a mollusc, we find xenopsin coexpressed with rhabdomeric-opsin in eye photoreceptor cells bearing both microvilli and cilia in larva of the annelid Malacoceros fuliginosus. This is the first organism known to have both xenopsin and ciliary opsin, showing that these opsins are not necessarily mutually exclusive. Compiling existing data, we propose that xenopsin may play an important role in many protostome eyes and provides new insights into the function, evolution, and possible plasticity of animal eye photoreceptor cells.

Data availability

Sequencing data have been deposited in Genbank under accession codes MT901639, MT901640, and MT901641. Source data files have been provided for Figures 2 and 5.

The following data sets were generated

Article and author information

Author details

  1. Clemens Christoph Döring

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  2. Suman Kumar

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  3. Sharat Chandra Tumu

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Ioannis Kourtesis

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Harald Hausen

    Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
    For correspondence
    harald.hausen@uib.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2788-2835

Funding

European Commission (FP7-PEOPLE-2012-ITN 317172 (NEPTUNE))

  • Harald Hausen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Dan Larhammar, Uppsala University, Sweden

Version history

  1. Received: January 15, 2020
  2. Accepted: September 1, 2020
  3. Accepted Manuscript published: September 3, 2020 (version 1)
  4. Version of Record published: October 1, 2020 (version 2)

Copyright

© 2020, Döring et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,123
    views
  • 293
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clemens Christoph Döring
  2. Suman Kumar
  3. Sharat Chandra Tumu
  4. Ioannis Kourtesis
  5. Harald Hausen
(2020)
The visual pigment xenopsin is widespread in protostome eyes and impacts the view on eye evolution
eLife 9:e55193.
https://doi.org/10.7554/eLife.55193

Share this article

https://doi.org/10.7554/eLife.55193

Further reading

    1. Biochemistry and Chemical Biology
    2. Evolutionary Biology
    Foteini Karapanagioti, Úlfur Águst Atlason ... Sebastian Obermaier
    Research Article

    The emergence of new protein functions is crucial for the evolution of organisms. This process has been extensively researched for soluble enzymes, but it is largely unexplored for membrane transporters, even though the ability to acquire new nutrients from a changing environment requires evolvability of transport functions. Here, we demonstrate the importance of environmental pressure in obtaining a new activity or altering a promiscuous activity in members of the amino acid-polyamine-organocation (APC)-type yeast amino acid transporters family. We identify APC members that have broader substrate spectra than previously described. Using in vivo experimental evolution, we evolve two of these transporter genes, AGP1 and PUT4, toward new substrate specificities. Single mutations on these transporters are found to be sufficient for expanding the substrate range of the proteins, while retaining the capacity to transport all original substrates. Nonetheless, each adaptive mutation comes with a distinct effect on the fitness for each of the original substrates, illustrating a trade-off between the ancestral and evolved functions. Collectively, our findings reveal how substrate-adaptive mutations in membrane transporters contribute to fitness and provide insights into how organisms can use transporter evolution to explore new ecological niches.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.