Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing

  1. Jennifer L Fribourgh
  2. Ashutosh Srivastava
  3. Colby R Sandate
  4. Alicia K Michael
  5. Peter L Hsu
  6. Christin Rakers
  7. Leslee T Nguyen
  8. Megan R Torgrimson
  9. Gian Carlo G Parico
  10. Sarvind Tripathi
  11. NIng Zheng
  12. Gabriel C Lander
  13. Tsuyoshi Hirota
  14. Florence Tama  Is a corresponding author
  15. Carrie L Partch  Is a corresponding author
  1. UCSC, United States
  2. Nagoya University, Japan
  3. Scripps Research Institute, United States
  4. University of Washington, United States
  5. Kyoto University, Japan

Abstract

Mammalian circadian rhythms are generated by a transcription-based feedback loop in which CLOCK:BMAL1 drives transcription of its repressors (PER1/2, CRY1/2), which ultimately interact with CLOCK:BMAL1 to close the feedback loop with ~24-hour periodicity. Here we pinpoint a key difference between CRY1 and CRY2 that underlies their differential strengths as transcriptional repressors. Both cryptochromes bind the BMAL1 transactivation domain similarly to sequester it from coactivators and repress CLOCK:BMAL1 activity. However, we find that CRY1 is recruited with much higher affinity to the PAS domain core of CLOCK:BMAL1, allowing it to serve as a stronger repressor that lengthens circadian period. We discovered a dynamic serine-rich loop adjacent to the secondary pocket in the photolyase homology region (PHR) domain that regulates differential binding of cryptochromes to the PAS domain core of CLOCK:BMAL1. Notably, binding of the co-repressor PER2 remodels the serine loop of CRY2, making it more CRY1-like and enhancing its affinity for CLOCK:BMAL1.

Data availability

Diffraction data have been deposited in PDB under the accession code 6OF7.

The following data sets were generated

Article and author information

Author details

  1. Jennifer L Fribourgh

    Chemistry and Biochemistry, UCSC, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ashutosh Srivastava

    Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9820-720X
  3. Colby R Sandate

    Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8758-5931
  4. Alicia K Michael

    Chemistry and Biochemistry, UCSC, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter L Hsu

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christin Rakers

    Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5668-6844
  7. Leslee T Nguyen

    Chemistry and Biochemistry, UCSC, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Megan R Torgrimson

    Chemistry and Biochemistry, UCSC, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Gian Carlo G Parico

    Chemistry and Biochemistry, UCSC, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Sarvind Tripathi

    Chemistry and Biochemistry, UCSC, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6959-0577
  11. NIng Zheng

    Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Gabriel C Lander

    Structural Biology, Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4921-1135
  13. Tsuyoshi Hirota

    Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4876-3608
  14. Florence Tama

    Institute of Transformative bio-Molecules, Nagoya University, Nagoya, Japan
    For correspondence
    florence.tama@nagoya-u.jp
    Competing interests
    The authors declare that no competing interests exist.
  15. Carrie L Partch

    Chemistry and Biochemistry, UCSC, Santa Cruz, United States
    For correspondence
    cpartch@ucsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4677-2861

Funding

National Institutes of Health (R01 GM107069)

  • Carrie L Partch

National Institutes of Health (F31 CA189660)

  • Alicia K Michael

National Institutes of Health (S10 OD021634)

  • Gabriel C Lander

UC Cancer Research Coordinating Committee (CRN-15-380548)

  • Carrie L Partch

National Institutes of Health (DP2 EB020402)

  • Gabriel C Lander

RIKEN (Dynamic Structural Biology Project)

  • Florence Tama

Pew Charitable Trusts (Pew Scholar)

  • Gabriel C Lander

Amgen (Young Investigator)

  • Gabriel C Lander

UC Office of the President (Chancellor's Postdoctoral Fellow)

  • Jennifer L Fribourgh

National Science Foundation (Graduate Research Fellowship)

  • Colby R Sandate

Howard Hughes Medical Institute (Gilliam fellowship)

  • Christin Rakers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adam Frost, University of California, San Francisco, United States

Version history

  1. Received: January 18, 2020
  2. Accepted: February 17, 2020
  3. Accepted Manuscript published: February 26, 2020 (version 1)
  4. Version of Record published: March 9, 2020 (version 2)

Copyright

© 2020, Fribourgh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,367
    Page views
  • 434
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer L Fribourgh
  2. Ashutosh Srivastava
  3. Colby R Sandate
  4. Alicia K Michael
  5. Peter L Hsu
  6. Christin Rakers
  7. Leslee T Nguyen
  8. Megan R Torgrimson
  9. Gian Carlo G Parico
  10. Sarvind Tripathi
  11. NIng Zheng
  12. Gabriel C Lander
  13. Tsuyoshi Hirota
  14. Florence Tama
  15. Carrie L Partch
(2020)
Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing
eLife 9:e55275.
https://doi.org/10.7554/eLife.55275

Share this article

https://doi.org/10.7554/eLife.55275

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.