Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing

  1. Jennifer L Fribourgh
  2. Ashutosh Srivastava
  3. Colby R Sandate
  4. Alicia K Michael
  5. Peter L Hsu
  6. Christin Rakers
  7. Leslee T Nguyen
  8. Megan R Torgrimson
  9. Gian Carlo G Parico
  10. Sarvind Tripathi
  11. NIng Zheng
  12. Gabriel C Lander
  13. Tsuyoshi Hirota
  14. Florence Tama  Is a corresponding author
  15. Carrie L Partch  Is a corresponding author
  1. UCSC, United States
  2. Nagoya University, Japan
  3. Scripps Research Institute, United States
  4. University of Washington, United States
  5. Kyoto University, Japan
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/55275/elife-55275-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer L Fribourgh
  2. Ashutosh Srivastava
  3. Colby R Sandate
  4. Alicia K Michael
  5. Peter L Hsu
  6. Christin Rakers
  7. Leslee T Nguyen
  8. Megan R Torgrimson
  9. Gian Carlo G Parico
  10. Sarvind Tripathi
  11. NIng Zheng
  12. Gabriel C Lander
  13. Tsuyoshi Hirota
  14. Florence Tama
  15. Carrie L Partch
(2020)
Dynamics at the serine loop underlie differential affinity of cryptochromes for CLOCK:BMAL1 to control circadian timing
eLife 9:e55275.
https://doi.org/10.7554/eLife.55275