Measuring ligand-cell surface receptor affinities with axial line-scanning fluorescence correlation spectroscopy

Abstract

Development and homeostasis of multicellular organisms is largely controlled by complex cell-cell signaling networks that rely on specific binding of secreted ligands to cell surface receptors. The Wnt signaling network, as an example, involves multiple ligands and receptors to elicit specific cellular responses. To understand the mechanisms of such a network, ligand-receptor interactions should be characterized quantitatively, ideally in live cells or tissues. Such measurements are possible using fluorescence microscopy yet challenging due to sample movement, low signal-to-background ratio and photobleaching. Here we present a robust approach based on fluorescence correlation spectroscopy with ultra-high speed axial line scanning, yielding precise equilibrium dissociation coefficients of interactions in the Wnt signaling pathway. Using CRISPR/Cas9 editing to endogenously tag receptors with fluorescent proteins, we demonstrate that the method delivers precise results even with low, near-native amounts of receptors.

Data availability

All data reported in the paper are included in the manuscript and/or supplementary Materials. Source data files have been provided for Figures 2, 5, 6 and 7.

Article and author information

Author details

  1. Antonia Franziska Eckert

    Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Peng Gao

    Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5354-3944
  3. Janine Wesslowski

    Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Xianxian Wang

    Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Jasmijn Rath

    Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Karin Nienhaus

    Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Gary Davidson

    Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
    For correspondence
    gary.davidson@kit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2264-5518
  8. Gerd Ulrich Nienhaus

    Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
    For correspondence
    uli@uiuc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5027-3192

Funding

Deutsche Forschungsgemeinschaft (SFB 1324,project A6,project Z2)

  • Gerd Ulrich Nienhaus

Deutsche Forschungsgemeinschaft (SFB 1324,project A6)

  • Gary Davidson

Helmholtz-Gemeinschaft (STN)

  • Gerd Ulrich Nienhaus

Helmholtz-Gemeinschaft (BIFTM)

  • Gary Davidson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Eckert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,329
    views
  • 428
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonia Franziska Eckert
  2. Peng Gao
  3. Janine Wesslowski
  4. Xianxian Wang
  5. Jasmijn Rath
  6. Karin Nienhaus
  7. Gary Davidson
  8. Gerd Ulrich Nienhaus
(2020)
Measuring ligand-cell surface receptor affinities with axial line-scanning fluorescence correlation spectroscopy
eLife 9:e55286.
https://doi.org/10.7554/eLife.55286

Share this article

https://doi.org/10.7554/eLife.55286

Further reading

    1. Physics of Living Systems
    Ning Liu, Wenan Qiang ... Huanyu Qiao
    Research Article

    Chromosome structure is complex, and many aspects of chromosome organization are still not understood. Measuring the stiffness of chromosomes offers valuable insight into their structural properties. In this study, we analyzed the stiffness of chromosomes from metaphase I (MI) and metaphase II (MII) oocytes. Our results revealed a tenfold increase in stiffness (Young’s modulus) of MI chromosomes compared to somatic chromosomes. Furthermore, the stiffness of MII chromosomes was found to be lower than that of MI chromosomes. We examined the role of meiosis-specific cohesin complexes in regulating chromosome stiffness. Surprisingly, the stiffness of chromosomes from three meiosis-specific cohesin mutants did not significantly differ from that of wild-type chromosomes, indicating that these cohesins may not be primary determinants of chromosome stiffness. Additionally, our findings revealed an age-related increase of chromosome stiffness for MI oocytes. Since aging is associated with elevated levels of DNA damage, we investigated the impact of etoposide-induced DNA damage on chromosome stiffness and found that it led to a reduction in stiffness in MI oocytes. Overall, our study underscores the dynamic and cyclical nature of chromosome stiffness, modulated by both the cell cycle and age-related factors.

    1. Cancer Biology
    2. Physics of Living Systems
    Joseph Ackermann, Chiara Bernard ... Martine D Ben Amar
    Research Article

    The tumor stroma consists mainly of extracellular matrix, fibroblasts, immune cells, and vasculature. Its structure and functions are altered during malignancy: tumor cells transform fibroblasts into cancer-associated fibroblasts, which exhibit immunosuppressive activities on which growth and metastasis depend. These include exclusion of immune cells from the tumor nest, cancer progression, and inhibition of T-cell-based immunotherapy. To understand these complex interactions, we measure the density of different cell types in the stroma using immunohistochemistry techniques on tumor samples from lung cancer patients. We incorporate these data into a minimal dynamical system, explore the variety of outcomes, and finally establish a spatio-temporal model that explains the cell distribution. We reproduce that cancer-associated fibroblasts act as a barrier to tumor expansion, but also reduce the efficiency of the immune response. Our conclusion is that the final outcome depends on the parameter values for each patient and leads to either tumor invasion, persistence, or eradication as a result of the interplay between cancer cell growth, T-cell cytotoxicity, and fibroblast activity. However, despite the existence of a wide range of scenarios, distinct trajectories, and patterns allow quantitative predictions that may help in the selection of new therapies and personalized protocols.