Deciphering the regulatory genome of Escherichia coli, one hundred promoters at a time

  1. William T Ireland
  2. Suzannah M Beeler
  3. Emanuel Flores-Bautista
  4. Nicholas S McCarty
  5. Tom Röschinger
  6. Nathan M Belliveau
  7. Michael J Sweredoski
  8. Annie Moradian
  9. Justin B Kinney
  10. Rob Phillips  Is a corresponding author
  1. California Institute of Technology, United States
  2. California Institute of Technology, United States
  3. Cold Spring Harbor Laboratory, United States

Abstract

Advances in DNA sequencing have revolutionized our ability to read genomes. However, even in the most well-studied of organisms, the bacterium Escherichia coli, for ≈ 65% of promoters we remain ignorant of their regulation. Until we crack this regulatory Rosetta Stone, efforts to read and write genomes will remain haphazard. We introduce a new method, Reg-Seq, that links massively-parallel reporter assays with mass spectrometry to produce a base pair resolution dissection of more than 100 E. coli promoters in 12 growth conditions. We demonstrate that the method recapitulates known regulatory information. Then, we examine regulatory architectures for more than 80 promoters which previously had no known regulatory information. In many cases, we also identify which transcription factors mediate their regulation. This method clears a path for highly multiplexed investigations of the regulatory genome of model organisms, with the potential of moving to an array of microbes of ecological and medical relevance.

Data availability

Sequencing data has been deposited in the SRA under accession no.PRJNA599253 and PRJNA603368Mass spectrometry data is deposited in the CalTech data repository at doi:10.22002/d1.1336Model files and inferred information footprints are deposited in the CalTech data repository at doi:10.22002/D1.1331Processed sequencing data sets and analysis software are available in the GitHub repository available at https://doi.org/10.5281/zenodo.3953312

The following data sets were generated

Article and author information

Author details

  1. William T Ireland

    Physics, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0971-2904
  2. Suzannah M Beeler

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1930-4827
  3. Emanuel Flores-Bautista

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicholas S McCarty

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tom Röschinger

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathan M Belliveau

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1536-1963
  7. Michael J Sweredoski

    Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0878-3831
  8. Annie Moradian

    Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0407-2031
  9. Justin B Kinney

    Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1897-3778
  10. Rob Phillips

    Department of Bioengineering, California Institute of Technology, Pasadena, United States
    For correspondence
    phillips@pboc.caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3082-2809

Funding

National Institutes of Health (Director's Pioneer Award)

  • Rob Phillips

National Institutes of Health (National Research Service Award,5T32GM007616-38)

  • Suzannah M Beeler

National Institutes of Health (Maximizing Investigators Research Award)

  • Rob Phillips

Howard Hughes Medical Institute (International Student Research Fellowship)

  • Nathan M Belliveau

National Institutes of Health (1S10OD02001301)

  • Annie Moradian

National Institutes of Health (1S10OD02001301)

  • Michael J Sweredoski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Armita Nourmohammad, University of Washington, United States

Version history

  1. Received: January 20, 2020
  2. Accepted: September 18, 2020
  3. Accepted Manuscript published: September 21, 2020 (version 1)
  4. Version of Record published: October 16, 2020 (version 2)

Copyright

© 2020, Ireland et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,766
    Page views
  • 778
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William T Ireland
  2. Suzannah M Beeler
  3. Emanuel Flores-Bautista
  4. Nicholas S McCarty
  5. Tom Röschinger
  6. Nathan M Belliveau
  7. Michael J Sweredoski
  8. Annie Moradian
  9. Justin B Kinney
  10. Rob Phillips
(2020)
Deciphering the regulatory genome of Escherichia coli, one hundred promoters at a time
eLife 9:e55308.
https://doi.org/10.7554/eLife.55308

Share this article

https://doi.org/10.7554/eLife.55308

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Camille Morel, Eline Lemerle ... Emmanuel Lemichez
    Research Article

    Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.

    1. Physics of Living Systems
    Davin Jeong, Guang Shi ... D Thirumalai
    Research Article

    Compartment formation in interphase chromosomes is a result of spatial segregation between euchromatin and heterochromatin on a few megabase pairs (Mbp) scale. On the sub-Mbp scales, topologically associating domains (TADs) appear as interacting domains along the diagonal in the ensemble averaged Hi-C contact map. Hi-C experiments showed that most of the TADs vanish upon deleting cohesin, while the compartment structure is maintained, and perhaps even enhanced. However, closer inspection of the data reveals that a non-negligible fraction of TADs is preserved (P-TADs) after cohesin loss. Imaging experiments show that, at the single-cell level, TAD-like structures are present even without cohesin. To provide a structural basis for these findings, we first used polymer simulations to show that certain TADs with epigenetic switches across their boundaries survive after depletion of loops. More importantly, the three-dimensional structures show that many of the P-TADs have sharp physical boundaries. Informed by the simulations, we analyzed the Hi-C maps (with and without cohesin) in mouse liver and human colorectal carcinoma cell lines, which affirmed that epigenetic switches and physical boundaries (calculated using the predicted 3D structures using the data-driven HIPPS method that uses Hi-C as the input) explain the origin of the P-TADs. Single-cell structures display TAD-like features in the absence of cohesin that are remarkably similar to the findings in imaging experiments. Some P-TADs, with physical boundaries, are relevant to the retention of enhancer–promoter/promoter–promoter interactions. Overall, our study shows that preservation of a subset of TADs upon removing cohesin is a robust phenomenon that is valid across multiple cell lines.