Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system

  1. Hiromasa Takemura  Is a corresponding author
  2. Nicola Palomero-Gallagher  Is a corresponding author
  3. Markus Axer
  4. David Gräßel
  5. Matthew J Jorgensen
  6. Roger Woods
  7. Karl Zilles
  1. National Institute of Information and Communications Technology, Japan
  2. Research Centre Jülich, Germany
  3. Wake Forest School of Medicine, United States
  4. University of California, Los Angeles, United States

Abstract

Although the primate visual system has been extensively studied, detailed spatial organization of white matter fiber tracts carrying visual information between areas has not been fully established. This is mainly due to the large gap between tracer studies and diffusion-weighted MRI studies, which focus on specific axonal connections and macroscale organization of fiber tracts, respectively. Here we used 3D polarization light imaging (3D-PLI), which enables direct visualization of fiber tracts at micrometer resolution, to identify and visualize fiber tracts of the visual system, such as stratum sagittale, inferior longitudinal fascicle, vertical occipital fascicle, tapetum and dorsal occipital bundle in vervet monkey brains. Moreover, 3D-PLI data provide detailed information on cortical projections of these tracts, distinction between neighboring tracts, and novel short-range pathways. This work provides essential information for interpretation of functional and diffusion-weighted MRI data, as well as revision of wiring diagrams based upon observations in the vervet visual system.

Data availability

Original data is publicly available via the EBRAINS platform of the Human Brain Project (Axer et al., 2020; DOI: 10.25493/AFR3-KDK).

The following data sets were generated

Article and author information

Author details

  1. Hiromasa Takemura

    Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Suita-shi, Osaka, Japan
    For correspondence
    htakemur@nict.go.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2096-2384
  2. Nicola Palomero-Gallagher

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    For correspondence
    n.palomero-gallagher@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4463-8578
  3. Markus Axer

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. David Gräßel

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3228-8048
  5. Matthew J Jorgensen

    Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Roger Woods

    Ahmanson-Lovelace Brain Mapping Center, Departments of Neurology and of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karl Zilles

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Society for the Promotion of Science (JP17H04684)

  • Hiromasa Takemura

Japan Society for the Promotion of Science (JP15J00412)

  • Hiromasa Takemura

European Union's Horizon 2020 Research and Innovation Programme (785907 (HBP SGA2))

  • Markus Axer
  • Karl Zilles

National Institutes of Health (R01 MH092311)

  • Roger Woods

P40 grant (OD010965)

  • Matthew J Jorgensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Vervet monkeys (Chlorocebus aethiops sabaeus) used in this study were part of the Vervet Research Colony and were housed at the Wake Forest School of Medicine. Macaque monkeys (Macaca fascicularis) were obtained from Covance (Münster, Germany). Animals were colony-born, of known age and were mother-reared in species-typical social groups. The present study did not include experimental procedures with live animals. Brains were obtained when animals were sacrificed to reduce the size of the colony, where they were maintained in accordance with the guidelines of the Directive 2010/63/eu of the European Parliament and of the Council on the protection of animals used for scientific purposes or the Wake Forest Institutional Animal Care and Use Committee IACUC #A11-219. Euthanasia procedures conformed to the AVMA Guidelines for the Euthanasia of Animals.

Copyright

© 2020, Takemura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,921
    views
  • 323
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiromasa Takemura
  2. Nicola Palomero-Gallagher
  3. Markus Axer
  4. David Gräßel
  5. Matthew J Jorgensen
  6. Roger Woods
  7. Karl Zilles
(2020)
Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system
eLife 9:e55444.
https://doi.org/10.7554/eLife.55444

Share this article

https://doi.org/10.7554/eLife.55444

Further reading

    1. Neuroscience
    Poortata Lalwani, Thad Polk, Douglas D Garrett
    Research Article

    Moment-to-moment neural variability has been shown to scale positively with the complexity of stimulus input. However, the mechanisms underlying the ability to align variability to input complexity are unknown. Using a combination of behavioral methods, computational modeling, fMRI, MR spectroscopy, and pharmacological intervention, we investigated the role of aging and GABA in neural variability during visual processing. We replicated previous findings that participants expressed higher variability when viewing more complex visual stimuli. Additionally, we found that such variability modulation was associated with higher baseline visual GABA levels and was reduced in older adults. When pharmacologically increasing GABA activity, we found that participants with lower baseline GABA levels showed a drug-related increase in variability modulation while participants with higher baseline GABA showed no change or even a reduction, consistent with an inverted-U account. Finally, higher baseline GABA and variability modulation were jointly associated with better visual-discrimination performance. These results suggest that GABA plays an important role in how humans utilize neural variability to adapt to the complexity of the visual world.

    1. Neuroscience
    François Osiurak, Giovanni Federico ... Mathieu Lesourd
    Research Article

    Our propensity to materiality, which consists in using, making, creating, and passing on technologies, has enabled us to shape the physical world according to our ends. To explain this proclivity, scientists have calibrated their lens to either low-level skills such as motor cognition or high-level skills such as language or social cognition. Yet, little has been said about the intermediate-level cognitive processes that are directly involved in mastering this materiality, that is, technical cognition. We aim to focus on this intermediate level for providing new insights into the neurocognitive bases of human materiality. Here, we show that a technical-reasoning process might be specifically at work in physical problem-solving situations. We found via two distinct neuroimaging studies that the area PF (parietal F) within the left parietal lobe is central for this reasoning process in both tool-use and non-tool-use physical problem-solving and can work along with social-cognitive skills to resolve day-to-day interactions that combine social and physical constraints. Our results demonstrate the existence of a specific cognitive module in the human brain dedicated to materiality, which might be the supporting pillar allowing the accumulation of technical knowledge over generations. Intensifying research on technical cognition could nurture a comprehensive framework that has been missing in fields interested in how early and modern humans have been interacting with the physical world through technology, and how this interaction has shaped our history and culture.