Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system

  1. Hiromasa Takemura  Is a corresponding author
  2. Nicola Palomero-Gallagher  Is a corresponding author
  3. Markus Axer
  4. David Gräßel
  5. Matthew J Jorgensen
  6. Roger Woods
  7. Karl Zilles
  1. National Institute of Information and Communications Technology, Japan
  2. Research Centre Jülich, Germany
  3. Wake Forest School of Medicine, United States
  4. University of California, Los Angeles, United States

Abstract

Although the primate visual system has been extensively studied, detailed spatial organization of white matter fiber tracts carrying visual information between areas has not been fully established. This is mainly due to the large gap between tracer studies and diffusion-weighted MRI studies, which focus on specific axonal connections and macroscale organization of fiber tracts, respectively. Here we used 3D polarization light imaging (3D-PLI), which enables direct visualization of fiber tracts at micrometer resolution, to identify and visualize fiber tracts of the visual system, such as stratum sagittale, inferior longitudinal fascicle, vertical occipital fascicle, tapetum and dorsal occipital bundle in vervet monkey brains. Moreover, 3D-PLI data provide detailed information on cortical projections of these tracts, distinction between neighboring tracts, and novel short-range pathways. This work provides essential information for interpretation of functional and diffusion-weighted MRI data, as well as revision of wiring diagrams based upon observations in the vervet visual system.

Data availability

Original data is publicly available via the EBRAINS platform of the Human Brain Project (Axer et al., 2020; DOI: 10.25493/AFR3-KDK).

The following data sets were generated

Article and author information

Author details

  1. Hiromasa Takemura

    Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Suita-shi, Osaka, Japan
    For correspondence
    htakemur@nict.go.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2096-2384
  2. Nicola Palomero-Gallagher

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    For correspondence
    n.palomero-gallagher@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4463-8578
  3. Markus Axer

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. David Gräßel

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3228-8048
  5. Matthew J Jorgensen

    Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Roger Woods

    Ahmanson-Lovelace Brain Mapping Center, Departments of Neurology and of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karl Zilles

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

Japan Society for the Promotion of Science (JP17H04684)

  • Hiromasa Takemura

Japan Society for the Promotion of Science (JP15J00412)

  • Hiromasa Takemura

European Union's Horizon 2020 Research and Innovation Programme (785907 (HBP SGA2))

  • Markus Axer
  • Karl Zilles

National Institutes of Health (R01 MH092311)

  • Roger Woods

P40 grant (OD010965)

  • Matthew J Jorgensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy Verstynen, Carnegie Mellon University, United States

Ethics

Animal experimentation: Vervet monkeys (Chlorocebus aethiops sabaeus) used in this study were part of the Vervet Research Colony and were housed at the Wake Forest School of Medicine. Macaque monkeys (Macaca fascicularis) were obtained from Covance (Münster, Germany). Animals were colony-born, of known age and were mother-reared in species-typical social groups. The present study did not include experimental procedures with live animals. Brains were obtained when animals were sacrificed to reduce the size of the colony, where they were maintained in accordance with the guidelines of the Directive 2010/63/eu of the European Parliament and of the Council on the protection of animals used for scientific purposes or the Wake Forest Institutional Animal Care and Use Committee IACUC #A11-219. Euthanasia procedures conformed to the AVMA Guidelines for the Euthanasia of Animals.

Version history

  1. Received: January 24, 2020
  2. Accepted: August 22, 2020
  3. Accepted Manuscript published: August 26, 2020 (version 1)
  4. Version of Record published: October 2, 2020 (version 2)

Copyright

© 2020, Takemura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,801
    views
  • 301
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hiromasa Takemura
  2. Nicola Palomero-Gallagher
  3. Markus Axer
  4. David Gräßel
  5. Matthew J Jorgensen
  6. Roger Woods
  7. Karl Zilles
(2020)
Anatomy of nerve fiber bundles at micrometer-resolution in the vervet monkey visual system
eLife 9:e55444.
https://doi.org/10.7554/eLife.55444

Share this article

https://doi.org/10.7554/eLife.55444

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.