The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction

  1. Ana Rita Costa
  2. Sara C Sousa
  3. Rita Pinto-Costa
  4. José C Mateus
  5. Cátia DF Lopes
  6. Ana Catarina Costa
  7. David Rosa
  8. Diana Machado
  9. Luis Pajuelo
  10. Xuewei Wang
  11. Fengquan Zhou
  12. António J Pereira
  13. Paula Sampaio
  14. Boris Y Rubinstein
  15. Inês Mendes Pinto
  16. Marko Lampe
  17. Paulo Aguiar
  18. Monica M Sousa  Is a corresponding author
  1. IBMC/i3S- University of Porto, Portugal
  2. i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
  3. INEB/i3S- University of Porto, Portugal
  4. Johns Hopkins University School of Medicine, United States
  5. i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
  6. Stowers Institute for Medical Research, United States
  7. International Iberian Nanotechnology Laboratory, Portugal
  8. EMBL, Germany
  9. University of Porto, Portugal

Abstract

Neurons have a membrane periodic skeleton (MPS) composed of actin rings interconnected by spectrin. Here, combining chemical and genetic gain- and loss-of-function assays, we show that in rat hippocampal neurons the MPS is an actomyosin network that controls axonal expansion and contraction. Using super-resolution microscopy, we analyzed the localization of axonal non-muscle myosin II (NMII). We show that active NMII light chains are colocalized with actin rings and organized in a circular periodic manner throughout the axon shaft. In contrast, NMII heavy chains are mostly positioned along the longitudinal axonal axis, being able to crosslink adjacent rings. NMII filaments can play contractile or scaffolding roles determined by their position relative to actin rings and activation state. We also show that MPS destabilization through NMII inactivation affects axonal electrophysiology, increasing action potential conduction velocity. In summary, our findings open new perspectives on axon diameter regulation, with important implications in neuronal biology.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ana Rita Costa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Sara C Sousa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Rita Pinto-Costa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. José C Mateus

    i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8058-5093
  5. Cátia DF Lopes

    Neuroengineering and Computational Neuroscience group, INEB/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Ana Catarina Costa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. David Rosa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Diana Machado

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  9. Luis Pajuelo

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  10. Xuewei Wang

    Orthopaedic Surgery and The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1375-7358
  11. Fengquan Zhou

    Orthopaedic Surgery and The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. António J Pereira

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  13. Paula Sampaio

    Advanced Light Microscopy, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  14. Boris Y Rubinstein

    Research Advisory, Stowers Institute for Medical Research, Kansas, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Inês Mendes Pinto

    Nanomedicine, International Iberian Nanotechnology Laboratory, Braga, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  16. Marko Lampe

    Advanced Light Microscopy Facility, EMBL, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4510-9048
  17. Paulo Aguiar

    INEB - Inst Nac Eng Biomedica, University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4164-5713
  18. Monica M Sousa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    For correspondence
    msousa@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4524-2260

Funding

Fundação para a Ciência e a Tecnologia (NORTE-01-0145-FEDER-028623; PTDC/MED-NEU/28623/2017)

  • Monica M Sousa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were carried out in accordance with the European Union Directive 2010/63/EU and national Decreto-lei nº113-2013. The protocols described were approved by the IBMC Ethical Committee and by the Portuguese Veterinarian Board.

Copyright

© 2020, Costa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,850
    views
  • 637
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana Rita Costa
  2. Sara C Sousa
  3. Rita Pinto-Costa
  4. José C Mateus
  5. Cátia DF Lopes
  6. Ana Catarina Costa
  7. David Rosa
  8. Diana Machado
  9. Luis Pajuelo
  10. Xuewei Wang
  11. Fengquan Zhou
  12. António J Pereira
  13. Paula Sampaio
  14. Boris Y Rubinstein
  15. Inês Mendes Pinto
  16. Marko Lampe
  17. Paulo Aguiar
  18. Monica M Sousa
(2020)
The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction
eLife 9:e55471.
https://doi.org/10.7554/eLife.55471

Share this article

https://doi.org/10.7554/eLife.55471

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.