The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction

  1. Ana Rita Costa
  2. Sara C Sousa
  3. Rita Pinto-Costa
  4. José C Mateus
  5. Cátia DF Lopes
  6. Ana Catarina Costa
  7. David Rosa
  8. Diana Machado
  9. Luis Pajuelo
  10. Xuewei Wang
  11. Fengquan Zhou
  12. António J Pereira
  13. Paula Sampaio
  14. Boris Y Rubinstein
  15. Inês Mendes Pinto
  16. Marko Lampe
  17. Paulo Aguiar
  18. Monica M Sousa  Is a corresponding author
  1. IBMC/i3S- University of Porto, Portugal
  2. i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
  3. INEB/i3S- University of Porto, Portugal
  4. Johns Hopkins University School of Medicine, United States
  5. i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
  6. Stowers Institute for Medical Research, United States
  7. International Iberian Nanotechnology Laboratory, Portugal
  8. EMBL, Germany
  9. University of Porto, Portugal

Abstract

Neurons have a membrane periodic skeleton (MPS) composed of actin rings interconnected by spectrin. Here, combining chemical and genetic gain- and loss-of-function assays, we show that in rat hippocampal neurons the MPS is an actomyosin network that controls axonal expansion and contraction. Using super-resolution microscopy, we analyzed the localization of axonal non-muscle myosin II (NMII). We show that active NMII light chains are colocalized with actin rings and organized in a circular periodic manner throughout the axon shaft. In contrast, NMII heavy chains are mostly positioned along the longitudinal axonal axis, being able to crosslink adjacent rings. NMII filaments can play contractile or scaffolding roles determined by their position relative to actin rings and activation state. We also show that MPS destabilization through NMII inactivation affects axonal electrophysiology, increasing action potential conduction velocity. In summary, our findings open new perspectives on axon diameter regulation, with important implications in neuronal biology.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Ana Rita Costa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  2. Sara C Sousa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  3. Rita Pinto-Costa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. José C Mateus

    i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8058-5093
  5. Cátia DF Lopes

    Neuroengineering and Computational Neuroscience group, INEB/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  6. Ana Catarina Costa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  7. David Rosa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  8. Diana Machado

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  9. Luis Pajuelo

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  10. Xuewei Wang

    Orthopaedic Surgery and The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1375-7358
  11. Fengquan Zhou

    Orthopaedic Surgery and The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. António J Pereira

    i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  13. Paula Sampaio

    Advanced Light Microscopy, IBMC/i3S- University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  14. Boris Y Rubinstein

    Research Advisory, Stowers Institute for Medical Research, Kansas, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Inês Mendes Pinto

    Nanomedicine, International Iberian Nanotechnology Laboratory, Braga, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  16. Marko Lampe

    Advanced Light Microscopy Facility, EMBL, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4510-9048
  17. Paulo Aguiar

    INEB - Inst Nac Eng Biomedica, University of Porto, Porto, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4164-5713
  18. Monica M Sousa

    Nerve Regeneration group, IBMC/i3S- University of Porto, Porto, Portugal
    For correspondence
    msousa@ibmc.up.pt
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4524-2260

Funding

Fundação para a Ciência e a Tecnologia (NORTE-01-0145-FEDER-028623; PTDC/MED-NEU/28623/2017)

  • Monica M Sousa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were carried out in accordance with the European Union Directive 2010/63/EU and national Decreto-lei nº113-2013. The protocols described were approved by the IBMC Ethical Committee and by the Portuguese Veterinarian Board.

Copyright

© 2020, Costa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,931
    views
  • 642
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana Rita Costa
  2. Sara C Sousa
  3. Rita Pinto-Costa
  4. José C Mateus
  5. Cátia DF Lopes
  6. Ana Catarina Costa
  7. David Rosa
  8. Diana Machado
  9. Luis Pajuelo
  10. Xuewei Wang
  11. Fengquan Zhou
  12. António J Pereira
  13. Paula Sampaio
  14. Boris Y Rubinstein
  15. Inês Mendes Pinto
  16. Marko Lampe
  17. Paulo Aguiar
  18. Monica M Sousa
(2020)
The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction
eLife 9:e55471.
https://doi.org/10.7554/eLife.55471

Share this article

https://doi.org/10.7554/eLife.55471

Further reading

    1. Cell Biology
    2. Neuroscience
    Naoki Yamawaki, Hande Login ... Asami Tanimura
    Research Article

    The claustrum complex is viewed as fundamental for higher-order cognition; however, the circuit organization and function of its neuroanatomical subregions are not well understood. We demonstrated that some of the key roles of the CLA complex can be attributed to the connectivity and function of a small group of neurons in its ventral subregion, the endopiriform (EN). We identified a subpopulation of EN neurons by their projection to the ventral CA1 (ENvCA1-proj. neurons), embedded in recurrent circuits with other EN neurons and the piriform cortex. Although the ENvCA1-proj. neuron activity was biased toward novelty across stimulus categories, their chemogenetic inhibition selectively disrupted the memory-guided but not innate responses of mice to novelty. Based on our functional connectivity analysis, we suggest that ENvCA1-proj. neurons serve as an essential node for recognition memory through recurrent circuits mediating sustained attention to novelty, and through feed-forward inhibition of distal vCA1 neurons shifting memory-guided behavior from familiarity to novelty.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.