Auditory cortical alpha/beta desynchronization prioritizes the representation of memory items during a retention period

  1. Nathan Weisz  Is a corresponding author
  2. Nadine Gabriele Kraft
  3. Gianpaolo Demarchi  Is a corresponding author
  1. University of Salzburg, Austria

Abstract

To-be-memorized information in working-memory could be protected against distracting influences by processes of functional inhibition or prioritization. Modulations of oscillations in the alpha to beta range in task-relevant sensory regions have been suggested to play an important role for both mechanisms. We adapted a Sternberg task variant to the auditory modality, with a strong or a weak distracting sound presented at a predictable time during the retention period. Using a time-generalized decoding approach relatively decreased strength of memorized information was found prior to strong distractors, paralleled by decreased pre-distractor alpha / beta power in the left superior temporal gyrus (lSTG). Over the entire group, reduced beta power in lSTG was associated with relatively increased strength of memorized information. The extent of alpha power modulations within participants was negatively correlated strength of memorized information. Overall our results are compatible with a prioritization account, however point to nuanced differences between alpha and beta oscillations.

Data availability

All the preprocessed, downsampled raw data and processing MATLAB and R scripts could be found at https://osf.io/pw9rd/

The following data sets were generated

Article and author information

Author details

  1. Nathan Weisz

    Department of Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
    For correspondence
    nathan.weisz@sbg.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7816-0037
  2. Nadine Gabriele Kraft

    Department of Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2818-2283
  3. Gianpaolo Demarchi

    Department of Psychology and Center for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
    For correspondence
    gianpaolo.demarchi@sbg.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7597-9298

Funding

The authors declare that there was no funding for this work.

Ethics

Human subjects: The study was conducted according to the declaration of Helsinki (7th revision). Written informed consent was obtained from each participant prior to the experiment. All procedures were approved by the Ethics Committee of the University of Salzburg (EK-GZ:22/2016a).

Copyright

© 2020, Weisz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,889
    views
  • 258
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nathan Weisz
  2. Nadine Gabriele Kraft
  3. Gianpaolo Demarchi
(2020)
Auditory cortical alpha/beta desynchronization prioritizes the representation of memory items during a retention period
eLife 9:e55508.
https://doi.org/10.7554/eLife.55508

Share this article

https://doi.org/10.7554/eLife.55508

Further reading

    1. Neuroscience
    Andrea Sattin, Chiara Nardin ... Tommaso Fellin
    Research Advance

    Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.

    1. Neuroscience
    Yiheng Zhang, Yun Chen ... He Cui
    Research Article

    Although recent studies suggest that activity in the motor cortex, in addition to generating motor outputs, receives substantial information regarding sensory inputs, it is still unclear how sensory context adjusts the motor commands. Here, we recorded population neural activity in the motor cortex via microelectrode arrays while monkeys performed flexible manual interceptions of moving targets. During this task, which requires predictive sensorimotor control, the activity of most neurons in the motor cortex encoding upcoming movements was influenced by ongoing target motion. Single-trial neural states at the movement onset formed staggered orbital geometries, suggesting that target motion modulates peri-movement activity in an orthogonal manner. This neural geometry was further evaluated with a representational model and recurrent neural networks (RNNs) with task-specific input-output mapping. We propose that the sensorimotor dynamics can be derived from neuronal mixed sensorimotor selectivity and dynamic interaction between modulations.