1. Computational and Systems Biology
  2. Neuroscience
Download icon

A sensorimotor model shows why a spectral jamming avoidance response does not help bats deal with jamming

  1. Omer Mazar  Is a corresponding author
  2. Yossi Yovel  Is a corresponding author
  1. Tel Aviv University, Israel
Research Article
  • Cited 1
  • Views 618
  • Annotations
Cite this article as: eLife 2020;9:e55539 doi: 10.7554/eLife.55539


For decades, researchers have speculated how echolocating bats deal with masking by conspecific calls when flying in aggregations. To date, only a few attempts have been made to mathematically quantify the probability of jamming, or its effects. We developed a comprehensive sensorimotor predator-prey simulation, modeling numerous bats foraging in proximity. We used this model to examine the effectiveness of a spectral Jamming Avoidance Response (JAR) as a solution for the masking problem. We found that foraging performance deteriorates when bats forage near conspecifics, however, applying a JAR does not improve insect sensing or capture. Because bats constantly adjust their echolocation to the performed task (even when flying alone), further shifting the signals' frequencies does not mitigate jamming. Our simulations explain how bats can hunt successfully in a group despite competition and despite potential masking. This research demonstrates the advantages of a modeling approach when examining a complex biological system.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source code files are uploaded with a Graphical User Interface and a readme file for explanation.

Article and author information

Author details

  1. Omer Mazar

    Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9763-4621
  2. Yossi Yovel

    Zoology, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.


Office of Naval Research Global (N62909-16-1-2133-P00003)

  • Omer Mazar

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Publication history

  1. Received: January 28, 2020
  2. Accepted: July 21, 2020
  3. Accepted Manuscript published: July 28, 2020 (version 1)
  4. Version of Record published: August 5, 2020 (version 2)


© 2020, Mazar & Yovel

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 618
    Page views
  • 87
  • 1

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)