1. Computational and Systems Biology
  2. Neuroscience
Download icon

A sensorimotor model shows why a spectral jamming avoidance response does not help bats deal with jamming

  1. Omer Mazar  Is a corresponding author
  2. Yossi Yovel  Is a corresponding author
  1. Tel Aviv University, Israel
Research Article
  • Cited 1
  • Views 587
  • Annotations
Cite this article as: eLife 2020;9:e55539 doi: 10.7554/eLife.55539

Abstract

For decades, researchers have speculated how echolocating bats deal with masking by conspecific calls when flying in aggregations. To date, only a few attempts have been made to mathematically quantify the probability of jamming, or its effects. We developed a comprehensive sensorimotor predator-prey simulation, modeling numerous bats foraging in proximity. We used this model to examine the effectiveness of a spectral Jamming Avoidance Response (JAR) as a solution for the masking problem. We found that foraging performance deteriorates when bats forage near conspecifics, however, applying a JAR does not improve insect sensing or capture. Because bats constantly adjust their echolocation to the performed task (even when flying alone), further shifting the signals' frequencies does not mitigate jamming. Our simulations explain how bats can hunt successfully in a group despite competition and despite potential masking. This research demonstrates the advantages of a modeling approach when examining a complex biological system.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source code files are uploaded with a Graphical User Interface and a readme file for explanation.

Article and author information

Author details

  1. Omer Mazar

    Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    omer_mazar@yahoo.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9763-4621
  2. Yossi Yovel

    Zoology, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    yossiyovel@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

Office of Naval Research Global (N62909-16-1-2133-P00003)

  • Omer Mazar

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Publication history

  1. Received: January 28, 2020
  2. Accepted: July 21, 2020
  3. Accepted Manuscript published: July 28, 2020 (version 1)
  4. Version of Record published: August 5, 2020 (version 2)

Copyright

© 2020, Mazar & Yovel

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 587
    Page views
  • 84
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Michael Sheinman et al.
    Research Article

    Horizontal Gene Transfer (HGT) is an essential force in microbial evolution. Despite detailed studies on a variety of systems, a global picture of HGT in the microbial world is still missing. Here, we exploit that HGT creates long identical DNA sequences in the genomes of distant species, which can be found efficiently using alignment-free methods. Our pairwise analysis of 93 481 bacterial genomes identified 138 273 HGT events. We developed a model to explain their statistical properties as well as estimate the transfer rate between pairs of taxa. This reveals that long-distance HGT is frequent: our results indicate that HGT between species from different phyla has occurred in at least 8% of the species. Finally, our results confirm that the function of sequences strongly impacts their transfer rate, which varies by more than 3 orders of magnitude between different functional categories. Overall, we provide a comprehensive view of HGT, illuminating a fundamental process driving bacterial evolution.

    1. Cell Biology
    2. Computational and Systems Biology
    Ina Lantzsch et al.
    Research Article

    The female meiotic spindles of most animals are acentrosomal and undergo striking morphological changes while transitioning from metaphase to anaphase. The ultra-structure of acentrosomal spindles, and how changes to this structure correlate with such dramatic spindle rearrangements remains largely unknown. To address this, we applied light microscopy, large-scale electron tomography and mathematical modeling of female meiotic C. elegans spindles undergoing the transition from metaphase to anaphase. Combining these approaches, we find that meiotic spindles are dynamic arrays of short microtubules that turn over on second time scales. The results show that the transition from metaphase to anaphase correlates with an increase in the number of microtubules and a decrease in their average length. Detailed analysis of the tomographic data revealed that the length of microtubules changes significantly during the metaphase-to-anaphase transition. This effect is most pronounced for those microtubules located within 150 nm of the chromosome surface. To understand the mechanisms that drive this transition, we developed a mathematical model for the microtubule length distribution that considers microtubule growth, catastrophe, and severing. Using Bayesian inference to compare model predictions and data, we find that microtubule turn-over is the major driver of the observed large-scale reorganizations. Our data suggest that in metaphase only a minor fraction of microtubules, those that are closest to the chromosomes, are severed. The large majority of microtubules, which are not in close contact with chromosomes, do not undergo severing. Instead, their length distribution is fully explained by growth and catastrophe alone. In anaphase, even microtubules close to the chromosomes show no signs of cutting. This suggests that the most prominent drivers of spindle rearrangements from metaphase to anaphase are changes in nucleation and catastrophe rate. In addition, we provide evidence that microtubule severing is dependent on the presence of katanin.