Cytoprotection by a naturally occurring variant of ATP5G1 in Arctic ground squirrel neural progenitor cells

  1. Neel S Singhal
  2. Meirong Bai
  3. Evan M Lee
  4. Shuo Luo
  5. Kayleigh R Cook
  6. Dengke K Ma  Is a corresponding author
  1. University of California, San Francisco, United States

Abstract

Many organisms in nature have evolved mechanisms to tolerate severe hypoxia or ischemia, including the hibernation-capable Arctic ground squirrel (AGS). Although hypoxic or ischemia tolerance in AGS involves physiological adaptations, little is known about the critical cellular mechanisms underlying intrinsic AGS cell resilience to metabolic stress. Through cell survival-based cDNA expression screens in neural progenitor cells, we identify a genetic variant of AGS Atp5g1 that confers cell resilience to metabolic stress. Atp5g1 encodes a subunit of the mitochondrial ATP synthase. Ectopic expression in mouse cells and CRISPR/Cas9 base editing of endogenous AGS loci revealed causal roles of one AGS-specific amino acid substitution in mediating cytoprotection by AGS ATP5G1. AGS ATP5G1 promotes metabolic stress resilience by modulating mitochondrial morphological change and metabolic functions. Our results identify a naturally occurring variant of ATP5G1 from a mammalian hibernator that critically contributes to intrinsic cytoprotection against metabolic stress.

Data availability

Data has been made available on Dryad (doi:10.7272/Q6MW2FCP) and code as been made available on GitHub (https://github.com/evanmlee/MaLab_spec_subs).

The following data sets were generated
    1. Neel Singhal
    2. Dengke Ma
    (2020) Data for
    Dryad Digital Repository, doi:10.7272/Q6MW2FCP.

Article and author information

Author details

  1. Neel S Singhal

    Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1605-4444
  2. Meirong Bai

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5919-7464
  3. Evan M Lee

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shuo Luo

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kayleigh R Cook

    Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dengke K Ma

    Physiology, University of California, San Francisco, San Francisco, United States
    For correspondence
    Dengke.Ma@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5619-7485

Funding

National Institute of General Medical Sciences (R01)

  • Dengke K Ma

Pew Charitable Trusts (Pew Scholar Award)

  • Dengke K Ma

David and Lucile Packard Foundation (Fellowship)

  • Dengke K Ma

Innovative Genomics Institute (Curci Scholar Award)

  • Dengke K Ma

American Heart Association (Fellowship Grant)

  • Neel S Singhal

American Heart Association (Fellowship Grant)

  • Meirong Bai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Singhal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,763
    views
  • 318
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Neel S Singhal
  2. Meirong Bai
  3. Evan M Lee
  4. Shuo Luo
  5. Kayleigh R Cook
  6. Dengke K Ma
(2020)
Cytoprotection by a naturally occurring variant of ATP5G1 in Arctic ground squirrel neural progenitor cells
eLife 9:e55578.
https://doi.org/10.7554/eLife.55578

Share this article

https://doi.org/10.7554/eLife.55578

Further reading

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.

    1. Cell Biology
    2. Genetics and Genomics
    Adam D Longhurst, Kyle Wang ... David P Toczyski
    Tools and Resources

    Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.