Fgf4 maintains Hes7 levels critical for normal somite segmentation clock function

  1. Matthew J Anderson
  2. Valentin Magidson
  3. Ryoichiro Kageyama
  4. Mark Lewandoski  Is a corresponding author
  1. National Cancer Institute, National Institutes of Health, United States
  2. Frederick National Laboratory for Cancer Research, United States
  3. Kyoto University, Japan

Abstract

During vertebrate development, the presomitic mesoderm (PSM) periodically segments into somites, which will form the segmented vertebral column and associated muscle, connective tissue, and dermis. The periodicity of somitogenesis is regulated by a segmentation clock of oscillating Notch activity. Here, we examined mouse mutants lacking only Fgf4 or Fgf8, which we previously demonstrated act redundantly to prevent PSM differentiation. Fgf8 is not required for somitogenesis, but Fgf4 mutants display a range of vertebral defects. We analyzed Fgf4 mutants by quantifying mRNAs fluorescently labeled by hybridization chain reaction within Imaris-based volumetric tissue subsets. These data indicate that FGF4 maintains Hes7 levels and normal oscillatory patterns. To support our hypothesis that FGF4 regulates somitogenesis through Hes7, we demonstrate genetic synergy between Hes7 and Fgf4, but not with Fgf8. Our data indicate that Fgf4 is potentially important in a spectrum of human Segmentation Defects of the Vertebrae caused by defective Notch oscillations.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Matthew J Anderson

    Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Valentin Magidson

    Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryoichiro Kageyama

    Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark Lewandoski

    Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, United States
    For correspondence
    lewandom@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1066-3735

Funding

National Cancer Institute (ZIA BC010338-19)

  • Mark Lewandoski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All experimental procedures followed the National Institutes of Health Guidelines for animal care and use, and were approved by the NCI-Frederick Animal Care and Use Committee. (Animal Study Protocol 17-069)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,344
    views
  • 402
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew J Anderson
  2. Valentin Magidson
  3. Ryoichiro Kageyama
  4. Mark Lewandoski
(2020)
Fgf4 maintains Hes7 levels critical for normal somite segmentation clock function
eLife 9:e55608.
https://doi.org/10.7554/eLife.55608

Share this article

https://doi.org/10.7554/eLife.55608

Further reading

    1. Cell Biology
    2. Developmental Biology
    Evgenia Leikina, Jarred M Whitlock ... Leonid Chernomordik
    Research Article

    The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells – generated by an increased number of cell fusion events – have higher resorptive activity. We find that osteoclast fusion and bone resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface. Here, we develop the hypothesis that La’s unique regulatory role in osteoclast multinucleation and function is controlled by an ROS switch in La trafficking. Using antibodies that recognize reduced or oxidized species of La, we find that differentiating osteoclasts enrich an oxidized species of La at the cell surface, which is distinct from the reduced La species conventionally localized within cell nuclei. ROS signaling triggers the shift from reduced to oxidized La species, its dephosphorylation and delivery to the surface of osteoclasts, where La promotes multinucleation and resorptive activity. Moreover, intracellular ROS signaling in differentiating osteoclasts oxidizes critical cysteine residues in the C-terminal half of La, producing this unconventional La species that promotes osteoclast fusion. Our findings suggest that redox signaling induces changes in the location and function of La and may represent a promising target for novel skeletal therapies.

    1. Developmental Biology
    2. Physics of Living Systems
    Jake Turley, Isaac V Chenchiah ... Helen Weavers
    Tools and Resources

    Cell division is fundamental to all healthy tissue growth, as well as being rate-limiting in the tissue repair response to wounding and during cancer progression. However, the role that cell divisions play in tissue growth is a collective one, requiring the integration of many individual cell division events. It is particularly difficult to accurately detect and quantify multiple features of large numbers of cell divisions (including their spatio-temporal synchronicity and orientation) over extended periods of time. It would thus be advantageous to perform such analyses in an automated fashion, which can naturally be enabled using deep learning. Hence, we develop a pipeline of deep learning models that accurately identify dividing cells in time-lapse movies of epithelial tissues in vivo. Our pipeline also determines their axis of division orientation, as well as their shape changes before and after division. This strategy enables us to analyse the dynamic profile of cell divisions within the Drosophila pupal wing epithelium, both as it undergoes developmental morphogenesis and as it repairs following laser wounding. We show that the division axis is biased according to lines of tissue tension and that wounding triggers a synchronised (but not oriented) burst of cell divisions back from the leading edge.