Establishment of H3K9me3-dependent heterochromatin during embryogenesis in Drosophila miranda

  1. Kevin H-C Wei
  2. Carolus Chan
  3. Doris Bachtrog  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

Heterochromatin is a key architectural feature of eukaryotic genomes crucial for silencing of repetitive elements. During Drosophila embryonic cellularization, heterochromatin rapidly appears over repetitive sequences but the molecular details of how heterochromatin is established are poorly understood. Here, we map the genome-wide distribution of H3K9me3-dependent heterochromatin in individual embryos of Drosophila miranda at precisely-staged developmental time points. We find that canonical H3K9me3 enrichment is established prior to cellularization, and matures into stable and broad heterochromatin domains through development. Intriguingly, initial nucleation sites of H3K9me3 enrichment appear as early as embryonic stage3 over transposable elements (TE) and progressively broaden, consistent with spreading to neighboring nucleosomes. The earliest nucleation sites are limited to specific regions of a small number of recently active retrotransposon families and often appear over promoter and 5' regions of LTR retrotransposons, while late nucleation develops broadly across the entirety of most TEs. Interestingly, early nucleating TEs are strongly associated with abundant maternal piRNAs and show early zygotic transcription. These results support a model of piRNA-associated co-transcriptional silencing while also suggesting additional mechanisms for site-restricted H3K9me3 nucleation at TEs in pre-cellular Drosophila embryos.

Data availability

All ChIP-seq and ATAC-seq data generated have been deposited on Genebank under BioProject PRJNA601450. Intermediate files, including ChIP enrichment files and peak calls, are uploaded on Dryad. R and perl scripts for spike in normalization, generating enrichment around peaks, and enrichment heatmaps are available on KW's github page (https://github.com/weikevinhc/heterochromatin.git).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kevin H-C Wei

    Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Carolus Chan

    Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Doris Bachtrog

    Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    dbachtrog@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9724-9467

Funding

National Institutes of Health (R01AG057029)

  • Doris Bachtrog

National Institutes of Health (R01GM101255)

  • Doris Bachtrog

National Institutes of Health (R01GM076007)

  • Doris Bachtrog

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Irene E Chiolo, University of Southern California, United States

Publication history

  1. Received: January 30, 2020
  2. Accepted: June 14, 2021
  3. Accepted Manuscript published: June 15, 2021 (version 1)
  4. Version of Record published: July 16, 2021 (version 2)

Copyright

© 2021, Wei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,603
    Page views
  • 219
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin H-C Wei
  2. Carolus Chan
  3. Doris Bachtrog
(2021)
Establishment of H3K9me3-dependent heterochromatin during embryogenesis in Drosophila miranda
eLife 10:e55612.
https://doi.org/10.7554/eLife.55612

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Divya Khattar et al.
    Research Article

    The tips of the developing respiratory buds are home to important progenitor cells marked by the expression of SOX9 and ID2. Early in embryonic development (prior to E13.5), SOX9+ progenitors are multipotent, generating both airway and alveolar epithelium, but are selective progenitors of alveolar epithelial cells later in development. Transcription factors, including Sox9, Etv5, Irx, Mycn, and Foxp1/2 interact in complex gene regulatory networks to control proliferation and differentiation of SOX9+ progenitors. Molecular mechanisms by which these transcription factors and other signaling pathways control chromatin state to establish and maintain cell-type identity are not well-defined. Herein, we analyze paired gene expression (RNA-Seq) and chromatin accessibility (ATAC-Seq) data from SOX9+ epithelial progenitor cells (EPCs) during embryonic development in Mus musculus. Widespread changes in chromatin accessibility were observed between E11.5 and E16.5, particularly at distal cis-regulatory elements (e.g. enhancers). Gene regulatory network (GRN) inference identified a common SOX9+ progenitor GRN, implicating phosphoinositide 3-kinase (PI3K) signaling in the developmental regulation of SOX9+ progenitor cells. Consistent with this model, conditional ablation of PI3K signaling in the developing lung epithelium in mouse resulted in an expansion of the SOX9+ EPC population and impaired airway epithelial cell differentiation. These data demonstrate that PI3K signaling is required for epithelial patterning during lung organogenesis, and emphasize the combinatorial power of paired RNA and ATAC seq in defining regulatory networks in development.

    1. Developmental Biology
    2. Genetics and Genomics
    Ruhi Patel et al.
    Research Article

    Animal development requires coordination among cyclic processes, sequential cell fate specifications, and once-a-lifetime morphogenic events, but the underlying timing mechanisms are not well understood. Caenorhabditis elegans undergoes four molts at regular 8 to 10 hour intervals. The pace of the cycle is governed by PERIOD/lin-42 and other as-yet unknown factors. Cessation of the cycle in young adults is controlled by the let-7 family of microRNAs and downstream transcription factors in the heterochronic pathway. Here, we characterize a negative feedback loop between NHR-23, the worm homolog of mammalian retinoid-related orphan receptors (RORs), and the let-7 family of microRNAs that regulates both the frequency and finite number of molts. The molting cycle is decelerated in nhr-23 knockdowns and accelerated in let-7(−) mutants, but timed similarly in let-7(−) nhr-23(−) double mutants and wild-type animals. NHR-23 binds response elements (ROREs) in the let-7 promoter and activates transcription. In turn, let-7 dampens nhr-23 expression across development via a complementary let-7-binding site (LCS) in the nhr-23 3′ UTR. The molecular interactions between NHR-23 and let-7 hold true for other let-7 family microRNAs. Either derepression of nhr-23 transcripts by LCS deletion or high gene dosage of nhr-23 leads to protracted behavioral quiescence and extra molts in adults. NHR-23 and let-7 also coregulate scores of genes required for execution of the molts, including lin-42. In addition, ROREs and LCSs isolated from mammalian ROR and let-7 genes function in C. elegans, suggesting conservation of this feedback mechanism. We propose that this feedback loop unites the molting timer and the heterochronic gene regulatory network, possibly by functioning as a cycle counter.