Low-frequency neural activity reflects rule-based chunking during speech listening

  1. Peiqing Jin
  2. Yuhan Lu
  3. Nai Ding  Is a corresponding author
  1. Zhejiang University, China

Abstract

Chunking is a key mechanism for sequence processing. Studies on speech sequences have suggested low-frequency cortical activity tracks spoken phrases, i.e., chunks of words defined by tacit linguistic knowledge. Here we investigate whether low-frequency cortical activity reflects a general mechanism for sequence chunking and can track chunks defined by temporarily learned artificial rules. The experiment records magnetoencephalographic (MEG) responses to a sequence of spoken words. To dissociate word properties from the chunk structures, two tasks separately require listeners to group pairs of semantically similar or semantically dissimilar words into chunks. In the MEG spectrum, a clear response is observed at the chunk rate. More importantly, the chunk-rate response is task-dependent. It is phase locked to chunk boundaries, instead of the semantic relatedness between words. The results strongly suggest that cortical activity can track chunks constructed based on task-related rules and potentially reflects a general mechanism for chunk-level representations.

Data availability

The MEG data and analysis code (in MatLab) were uploaded as Source data files.

Article and author information

Author details

  1. Peiqing Jin

    Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China 310027, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuhan Lu

    Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China 310027, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Nai Ding

    Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China 310027, Zhejiang University, Hangzhou, China
    For correspondence
    ding_nai@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3428-2723

Funding

National Natural Science Foundation of China (31771248)

  • Nai Ding

Major Scientific Research Project of Zhejiang Lab (2019KB0AC02)

  • Nai Ding

Fundamental Research Funds for the Central Universities

  • Nai Ding

Zhejiang Provincial Natural Science Foundation of China (LY20C090008)

  • Peiqing Jin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The experimental procedures were approved by the Research Ethics Committee of the College of Medicine, Zhejiang University (2019-047) and the Research Ethics Committee of Peking University (2019-02-05). The participants provided written consent and were paid.

Copyright

© 2020, Jin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,171
    views
  • 332
    downloads
  • 35
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peiqing Jin
  2. Yuhan Lu
  3. Nai Ding
(2020)
Low-frequency neural activity reflects rule-based chunking during speech listening
eLife 9:e55613.
https://doi.org/10.7554/eLife.55613

Share this article

https://doi.org/10.7554/eLife.55613

Further reading

    1. Neuroscience
    Phillip P Witkowski, Lindsay JH Rondot ... Erie Boorman
    Research Article

    Adaptive behavior in complex environments critically relies on the ability to appropriately link specific choices or actions to their outcomes. However, the neural mechanisms that support the ability to credit only those past choices believed to have caused the observed outcomes remain unclear. Here, we leverage multivariate pattern analyses of functional magnetic resonance imaging (fMRI) data and an adaptive learning task to shed light on the underlying neural mechanisms of such specific credit assignment. We find that the lateral orbitofrontal cortex (lOFC) and hippocampus (HC) code for the causal choice identity when credit needs to be assigned for choices that are separated from outcomes by a long delay, even when this delayed transition is punctuated by interim decisions. Further, we show when interim decisions must be made, learning is additionally supported by lateral frontopolar cortex (lFPC). Our results indicate that lFPC holds previous causal choices in a ‘pending’ state until a relevant outcome is observed, and the fidelity of these representations predicts the fidelity of subsequent causal choice representations in lOFC and HC during credit assignment. Together, these results highlight the importance of the timely reinstatement of specific causes in lOFC and HC in learning choice-outcome relationships when delays and choices intervene, a critical component of real-world learning and decision making.

    1. Neuroscience
    Ekin Kaya, Evan Wegienka ... Gideon Rothschild
    Research Article

    Effective regulation of energy metabolism is critical for survival. Metabolic control involves various nuclei within the hypothalamus, which receive information about the body’s energy state and coordinate appropriate responses to maintain homeostasis, such as thermogenesis, pancreatic insulin secretion, and food-seeking behaviors. It has recently been found that the hippocampus, a brain region traditionally associated with memory and spatial navigation, is also involved in metabolic regulation. Specifically, hippocampal sharp wave-ripples (SWRs), which are high-frequency neural oscillations supporting memory consolidation and foraging decisions, have been shown to reduce peripheral glucose levels. However, whether SWRs are enhanced by recent feeding—when the need for glucose metabolism increases, and if so, whether feeding-dependent modulation of SWRs is communicated to other brain regions involved in metabolic regulation—remains unknown. To address these gaps, we recorded SWRs from the dorsal CA1 region of the hippocampus of mice during sleep sessions before and after consumption of meals of varying caloric values. We found that SWRs occurring during sleep are significantly enhanced following food intake, with the magnitude of enhancement being dependent on the caloric content of the meal. This pattern occurred under both food-deprived and ad libitum feeding conditions. Moreover, we demonstrate that GABAergic neurons in the lateral hypothalamus, which are known to regulate food intake, exhibit a robust SWR-triggered increase in activity. These findings identify the satiety state as a factor modulating SWRs and suggest that hippocampal-lateral hypothalamic communication is a potential mechanism by which SWRs could modulate peripheral metabolism and food intake.