Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy

  1. Hironori Uehara  Is a corresponding author
  2. Xiaohui Zhang
  3. Felipe Pereira
  4. Siddharth Narendran
  5. Susie Choi
  6. Sai Bhuvanagiri
  7. Jinlu Liu
  8. Sangeetha Ravi Kumar
  9. Austin Bohner
  10. Lara Carroll
  11. Bonnie Archer
  12. Yue Zhang
  13. Wei Liu
  14. Guangping Gao
  15. Jayakrishna Ambati
  16. Albert S Jun
  17. Balamurali K Ambati  Is a corresponding author
  1. University of Oregon, United States
  2. University of Utah, United States
  3. University of Virginia, United States
  4. Loma Linda University, United States
  5. University of Massachusetts, United States
  6. Wilmer Eye Institute, Johns Hopkins School of Medicine, United States
  7. Moran Eye Center, University of Utah, United States

Abstract

A missense mutation of collagen type VIII alpha 2 chain (COL8A2) gene leads to early onset Fuchs' endothelial corneal dystrophy (FECD), which progressively impairs vision through loss of corneal endothelial cells. We demonstrate that CRISPR/Cas9-based postnatal gene editing achieves structural and functional rescue in a mouse model of FECD. A single intraocular injection of an adenovirus encoding both the Cas9 gene and guide RNA (Ad-Cas9-Col8a2gRNA), efficiently knocked down mutant COL8A2 expression in corneal endothelial cells, prevented endothelial cell loss, and rescued corneal endothelium pumping function in adult Col8a2 mutant mice. There were no adverse sequelae on histology or electroretinography. Col8a2 start codon disruption represents a non-surgical strategy to prevent vision loss in early-onset FECD. As this demonstrates the ability of Ad-Cas9-gRNA to restore phenotype in adult post-mitotic cells, this method may be widely applicable to adult-onset diseases, even in tissues affected with disorders of non-reproducing cells.

Data availability

High-throughput Sequencing data have been deposited in GEO under accession codes GSE146999. Source data files have been provided as excel files.

The following data sets were generated

Article and author information

Author details

  1. Hironori Uehara

    Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, United States
    For correspondence
    uhironori0916@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6133-4918
  2. Xiaohui Zhang

    Moran Eye Center, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Felipe Pereira

    Ophthalmology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Siddharth Narendran

    Ophthalmology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Susie Choi

    Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sai Bhuvanagiri

    Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jinlu Liu

    Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sangeetha Ravi Kumar

    Department of Ophthalmology, Loma Linda University, Loma Linda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Austin Bohner

    Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Lara Carroll

    Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Bonnie Archer

    Moran eye center, University of Utah, Salt lake city, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Yue Zhang

    Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Wei Liu

    Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Guangping Gao

    Horae Gene Therapy Center, University of Massachusetts, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Jayakrishna Ambati

    Ophthalmology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Albert S Jun

    Ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Balamurali K Ambati

    Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, United States
    For correspondence
    bambati@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (R01EY017950)

  • Balamurali K Ambati

Research to Prevent Blindness

  • Balamurali K Ambati

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Constance L Cepko, Harvard Medical School, United States

Ethics

Animal experimentation: This study was conducted in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#15-11024 and #18-10016) of the University of Utah.

Version history

  1. Received: January 31, 2020
  2. Accepted: June 7, 2021
  3. Accepted Manuscript published: June 8, 2021 (version 1)
  4. Version of Record published: June 21, 2021 (version 2)

Copyright

© 2021, Uehara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,737
    Page views
  • 335
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hironori Uehara
  2. Xiaohui Zhang
  3. Felipe Pereira
  4. Siddharth Narendran
  5. Susie Choi
  6. Sai Bhuvanagiri
  7. Jinlu Liu
  8. Sangeetha Ravi Kumar
  9. Austin Bohner
  10. Lara Carroll
  11. Bonnie Archer
  12. Yue Zhang
  13. Wei Liu
  14. Guangping Gao
  15. Jayakrishna Ambati
  16. Albert S Jun
  17. Balamurali K Ambati
(2021)
Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy
eLife 10:e55637.
https://doi.org/10.7554/eLife.55637

Share this article

https://doi.org/10.7554/eLife.55637

Further reading

    1. Genetics and Genomics
    Pianpian Zhao, Zhifeng Sheng ... Hou-Feng Zheng
    Research Article

    The ‘diabetic bone paradox’ suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.

    1. Genetics and Genomics
    Songyuan Wu, Xiaoling Tong ... Fangyin Dai
    Research Article

    The color pattern of insects is one of the most diverse adaptive evolutionary phenotypes. However, the molecular regulation of this color pattern is not fully understood. In this study, we found that the transcription factor Bm-mamo is responsible for black dilute (bd) allele mutations in the silkworm. Bm-mamo belongs to the BTB zinc finger family and is orthologous to mamo in Drosophila melanogaster. This gene has a conserved function in gamete production in Drosophila and silkworms and has evolved a pleiotropic function in the regulation of color patterns in caterpillars. Using RNAi and clustered regularly interspaced short palindromic repeats (CRISPR) technology, we showed that Bm-mamo is a repressor of dark melanin patterns in the larval epidermis. Using in vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also showed that Bm-mamo likely regulates the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with the dual role of this transcription factor in regulating both the structure and shape of the cuticle and the pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as into the construction of more complex epidermal features in some insects.