A unified computational model for cortical post-synaptic plasticity

  1. Tuomo Mäki-Marttunen  Is a corresponding author
  2. Nicolangelo Iannella
  3. Andrew G Edwards
  4. Gaute T Einevoll
  5. Kim T Blackwell
  1. Simula Research Laboratory, Norway
  2. University of Oslo, Norway
  3. Norwegian University of Life Sciences, Norway
  4. George Mason University, United States

Abstract

Signalling pathways leading to post-synaptic plasticity have been examined in many types of experimental studies, but a unified picture on how multiple biochemical pathways collectively shape neocortical plasticity is missing. We built a biochemically detailed model of post-synaptic plasticity describing CaMKII, PKA, and PKC pathways and their contribution to synaptic potentiation or depression. We developed a statistical AMPA-receptor-tetramer model, which permits the estimation of the AMPA-receptor-mediated maximal synaptic conductance based on numbers of GluR1s and GluR2s predicted by the biochemical signalling model. We show that our model reproduces neuromodulator-gated spike-timing-dependent plasticity as observed in the visual cortex and can be fit to data from many cortical areas, uncovering the biochemical contributions of the pathways pinpointed by the underlying experimental studies. Our model explains the dependence of different forms of plasticity on the availability of different proteins and can be used for the study of mental disorder-associated impairments of cortical plasticity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Simulation scripts can be found at http://modeldb.yale.edu/260971. Password "synaptic" required during peer-review.

Article and author information

Author details

  1. Tuomo Mäki-Marttunen

    Computational Physiology, Simula Research Laboratory, Fornebu, Norway
    For correspondence
    tuomo@simula.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7082-2507
  2. Nicolangelo Iannella

    Department of Biosciences, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew G Edwards

    Computational Physiology, Simula Research Laboratory, Fornebu, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Gaute T Einevoll

    Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5425-5012
  5. Kim T Blackwell

    Bioengineering Department, George Mason University, Fairfax, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4711-2344

Funding

Research council of Norway (248828)

  • Tuomo Mäki-Marttunen
  • Andrew G Edwards
  • Gaute T Einevoll

European Union Horizon 2020 Research and Innovation (785907)

  • Gaute T Einevoll

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Harel Z Shouval, University of Texas Medical School at Houston, United States

Publication history

  1. Received: February 3, 2020
  2. Accepted: July 29, 2020
  3. Accepted Manuscript published: July 30, 2020 (version 1)
  4. Version of Record published: August 13, 2020 (version 2)
  5. Version of Record updated: January 28, 2021 (version 3)

Copyright

© 2020, Mäki-Marttunen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,229
    Page views
  • 335
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tuomo Mäki-Marttunen
  2. Nicolangelo Iannella
  3. Andrew G Edwards
  4. Gaute T Einevoll
  5. Kim T Blackwell
(2020)
A unified computational model for cortical post-synaptic plasticity
eLife 9:e55714.
https://doi.org/10.7554/eLife.55714

Further reading

    1. Computational and Systems Biology
    David Elkind, Hannah Hochgerner ... Amit Zeisel
    Research Article Updated

    The mouse brain is by far the most intensively studied among mammalian brains, yet basic measures of its cytoarchitecture remain obscure. For example, quantifying cell numbers, and the interplay of sex, strain, and individual variability in cell density and volume is out of reach for many regions. The Allen Mouse Brain Connectivity project produces high-resolution full brain images of hundreds of brains. Although these were created for a different purpose, they reveal details of neuroanatomy and cytoarchitecture. Here, we used this population to systematically characterize cell density and volume for each anatomical unit in the mouse brain. We developed a DNN-based segmentation pipeline that uses the autofluorescence intensities of images to segment cell nuclei even within the densest regions, such as the dentate gyrus. We applied our pipeline to 507 brains of males and females from C57BL/6J and FVB.CD1 strains. Globally, we found that increased overall brain volume does not result in uniform expansion across all regions. Moreover, region-specific density changes are often negatively correlated with the volume of the region; therefore, cell count does not scale linearly with volume. Many regions, including layer 2/3 across several cortical areas, showed distinct lateral bias. We identified strain-specific or sex-specific differences. For example, males tended to have more cells in extended amygdala and hypothalamic regions (MEA, BST, BLA, BMA, and LPO, AHN) while females had more cells in the orbital cortex (ORB). Yet, inter-individual variability was always greater than the effect size of a single qualifier. We provide the results of this analysis as an accessible resource for the community.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Magdalena L Russell, Noah Simon ... Frederick A Matsen IV
    Research Article

    To appropriately defend against a wide array of pathogens, humans somatically generate highly diverse repertoires of B cell and T cell receptors (BCRs and TCRs) through a random process called V(D)J recombination. Receptor diversity is achieved during this process through both the combinatorial assembly of V(D)J-genes and the junctional deletion and insertion of nucleotides. While the Artemis protein is often regarded as the main nuclease involved in V(D)J recombination, the exact mechanism of nucleotide trimming is not understood. Using a previously published TCRβ repertoire sequencing data set, we have designed a flexible probabilistic model of nucleotide trimming that allows us to explore various mechanistically interpretable sequence-level features. We show that local sequence context, length, and GC nucleotide content in both directions of the wider sequence, together, can most accurately predict the trimming probabilities of a given V-gene sequence. Because GC nucleotide content is predictive of sequence-breathing, this model provides quantitative statistical evidence regarding the extent to which double-stranded DNA may need to be able to breathe for trimming to occur. We also see evidence of a sequence motif that appears to get preferentially trimmed, independent of GC-content-related effects. Further, we find that the inferred coefficients from this model provide accurate prediction for V- and J-gene sequences from other adaptive immune receptor loci. These results refine our understanding of how the Artemis nuclease may function to trim nucleotides during V(D)J recombination and provide another step toward understanding how V(D)J recombination generates diverse receptors and supports a powerful, unique immune response in healthy humans.