A unified computational model for cortical post-synaptic plasticity

  1. Tuomo Mäki-Marttunen  Is a corresponding author
  2. Nicolangelo Iannella
  3. Andrew G Edwards
  4. Gaute T Einevoll
  5. Kim T Blackwell
  1. Simula Research Laboratory, Norway
  2. University of Oslo, Norway
  3. Norwegian University of Life Sciences, Norway
  4. George Mason University, United States

Abstract

Signalling pathways leading to post-synaptic plasticity have been examined in many types of experimental studies, but a unified picture on how multiple biochemical pathways collectively shape neocortical plasticity is missing. We built a biochemically detailed model of post-synaptic plasticity describing CaMKII, PKA, and PKC pathways and their contribution to synaptic potentiation or depression. We developed a statistical AMPA-receptor-tetramer model, which permits the estimation of the AMPA-receptor-mediated maximal synaptic conductance based on numbers of GluR1s and GluR2s predicted by the biochemical signalling model. We show that our model reproduces neuromodulator-gated spike-timing-dependent plasticity as observed in the visual cortex and can be fit to data from many cortical areas, uncovering the biochemical contributions of the pathways pinpointed by the underlying experimental studies. Our model explains the dependence of different forms of plasticity on the availability of different proteins and can be used for the study of mental disorder-associated impairments of cortical plasticity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Simulation scripts can be found at http://modeldb.yale.edu/260971. Password "synaptic" required during peer-review.

Article and author information

Author details

  1. Tuomo Mäki-Marttunen

    Computational Physiology, Simula Research Laboratory, Fornebu, Norway
    For correspondence
    tuomo@simula.no
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7082-2507
  2. Nicolangelo Iannella

    Department of Biosciences, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew G Edwards

    Computational Physiology, Simula Research Laboratory, Fornebu, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Gaute T Einevoll

    Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5425-5012
  5. Kim T Blackwell

    Bioengineering Department, George Mason University, Fairfax, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4711-2344

Funding

Research council of Norway (248828)

  • Tuomo Mäki-Marttunen
  • Andrew G Edwards
  • Gaute T Einevoll

European Union Horizon 2020 Research and Innovation (785907)

  • Gaute T Einevoll

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Mäki-Marttunen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,827
    views
  • 434
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tuomo Mäki-Marttunen
  2. Nicolangelo Iannella
  3. Andrew G Edwards
  4. Gaute T Einevoll
  5. Kim T Blackwell
(2020)
A unified computational model for cortical post-synaptic plasticity
eLife 9:e55714.
https://doi.org/10.7554/eLife.55714

Share this article

https://doi.org/10.7554/eLife.55714

Further reading

    1. Computational and Systems Biology
    Nobuhisa Umeki, Yoshiyuki Kabashima, Yasushi Sako
    Research Article

    The RAS-MAPK system plays an important role in regulating various cellular processes, including growth, differentiation, apoptosis, and transformation. Dysregulation of this system has been implicated in genetic diseases and cancers affecting diverse tissues. To better understand the regulation of this system, we employed information flow analysis based on transfer entropy (TE) between the activation dynamics of two key elements in cells stimulated with EGF: SOS, a guanine nucleotide exchanger for the small GTPase RAS, and RAF, a RAS effector serine/threonine kinase. TE analysis allows for model-free assessment of the timing, direction, and strength of the information flow regulating the system response. We detected significant amounts of TE in both directions between SOS and RAF, indicating feedback regulation. Importantly, the amount of TE did not simply follow the input dose or the intensity of the causal reaction, demonstrating the uniqueness of TE. TE analysis proposed regulatory networks containing multiple tracks and feedback loops and revealed temporal switching in the reaction pathway primarily responsible for reaction control. This proposal was confirmed by the effects of an MEK inhibitor on TE. Furthermore, TE analysis identified the functional disorder of a SOS mutation associated with Noonan syndrome, a human genetic disease, of which the pathogenic mechanism has not been precisely known yet. TE assessment holds significant promise as a model-free analysis method of reaction networks in molecular pharmacology and pathology.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Eric V Strobl, Eric Gamazon
    Research Article

    Root causal gene expression levels – or root causal genes for short – correspond to the initial changes to gene expression that generate patient symptoms as a downstream effect. Identifying root causal genes is critical towards developing treatments that modify disease near its onset, but no existing algorithms attempt to identify root causal genes from data. RNA-sequencing (RNA-seq) data introduces challenges such as measurement error, high dimensionality and non-linearity that compromise accurate estimation of root causal effects even with state-of-the-art approaches. We therefore instead leverage Perturb-seq, or high-throughput perturbations with single-cell RNA-seq readout, to learn the causal order between the genes. We then transfer the causal order to bulk RNA-seq and identify root causal genes specific to a given patient for the first time using a novel statistic. Experiments demonstrate large improvements in performance. Applications to macular degeneration and multiple sclerosis also reveal root causal genes that lie on known pathogenic pathways, delineate patient subgroups and implicate a newly defined omnigenic root causal model.