1. Computational and Systems Biology
  2. Neuroscience
Download icon

A unified computational model for cortical post-synaptic plasticity

  1. Tuomo Mäki-Marttunen  Is a corresponding author
  2. Nicolangelo Iannella
  3. Andrew G Edwards
  4. Gaute T Einevoll
  5. Kim T Blackwell
  1. Simula Research Laboratory, Norway
  2. University of Oslo, Norway
  3. Norwegian University of Life Sciences, Norway
  4. George Mason University, United States
Research Article
  • Cited 0
  • Views 1,179
  • Annotations
Cite this article as: eLife 2020;9:e55714 doi: 10.7554/eLife.55714


Signalling pathways leading to post-synaptic plasticity have been examined in many types of experimental studies, but a unified picture on how multiple biochemical pathways collectively shape neocortical plasticity is missing. We built a biochemically detailed model of post-synaptic plasticity describing CaMKII, PKA, and PKC pathways and their contribution to synaptic potentiation or depression. We developed a statistical AMPA-receptor-tetramer model, which permits the estimation of the AMPA-receptor-mediated maximal synaptic conductance based on numbers of GluR1s and GluR2s predicted by the biochemical signalling model. We show that our model reproduces neuromodulator-gated spike-timing-dependent plasticity as observed in the visual cortex and can be fit to data from many cortical areas, uncovering the biochemical contributions of the pathways pinpointed by the underlying experimental studies. Our model explains the dependence of different forms of plasticity on the availability of different proteins and can be used for the study of mental disorder-associated impairments of cortical plasticity.

Article and author information

Author details

  1. Tuomo Mäki-Marttunen

    Computational Physiology, Simula Research Laboratory, Fornebu, Norway
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7082-2507
  2. Nicolangelo Iannella

    Department of Biosciences, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew G Edwards

    Computational Physiology, Simula Research Laboratory, Fornebu, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Gaute T Einevoll

    Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5425-5012
  5. Kim T Blackwell

    Bioengineering Department, George Mason University, Fairfax, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4711-2344


Research council of Norway (248828)

  • Tuomo Mäki-Marttunen
  • Andrew G Edwards
  • Gaute T Einevoll

European Union Horizon 2020 Research and Innovation (785907)

  • Gaute T Einevoll

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Harel Z Shouval, University of Texas Medical School at Houston, United States

Publication history

  1. Received: February 3, 2020
  2. Accepted: July 29, 2020
  3. Accepted Manuscript published: July 30, 2020 (version 1)
  4. Version of Record published: August 13, 2020 (version 2)
  5. Version of Record updated: January 28, 2021 (version 3)


© 2020, Mäki-Marttunen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,179
    Page views
  • 211
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    Lucile Megret et al.
    Research Article

    Loss of cellular homeostasis has been implicated in the etiology of several neurodegenerative diseases (NDs). However, the molecular mechanisms that underlie this loss remain poorly understood on a systems level in each case. Here, using a novel computational approach to integrate dimensional RNA-seq and in vivo neuron survival data, we map the temporal dynamics of homeostatic and pathogenic responses in four striatal cell types of Huntington’s disease (HD) model mice. This map shows that most pathogenic responses are mitigated and most homeostatic responses are decreased over time, suggesting that neuronal death in HD is primarily driven by the loss of homeostatic responses. Moreover, different cell types may lose similar homeostatic processes, for example, endosome biogenesis and mitochondrial quality control in Drd1-expressing neurons and astrocytes. HD relevance is validated by human stem cell, genome-wide association study, and post-mortem brain data. These findings provide a new paradigm and framework for therapeutic discovery in HD and other NDs.

    1. Cell Biology
    2. Computational and Systems Biology
    Taraneh Zarin et al.
    Research Advance

    In previous work, we showed that intrinsically disordered regions (IDRs) of proteins contain sequence-distributed molecular features that are conserved over evolution, despite little sequence similarity that can be detected in alignments (Zarin et al. 2019). Here, we aim to use these molecular features to predict specific biological functions for individual IDRs and identify the molecular features within them that are associated with these functions. We find that the predictable functions are diverse. Examining the associated molecular features, we note some that are consistent with previous reports, and identify others that were previously unknown. We experimentally confirm that elevated isoelectric point and hydrophobicity, features that are positively associated with mitochondrial localization, are necessary for mitochondrial targeting function. Remarkably, increasing isoelectric point in a synthetic IDR restores weak mitochondrial targeting. We believe feature analysis represents a new systematic approach to understand how biological functions of IDRs are specified by their protein sequences.