Apical length governs computational diversity of layer 5 pyramidal neurons

  1. Alessandro R Galloni
  2. Aeron Laffere
  3. Ede Rancz  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. Birkbeck, University of London, United Kingdom

Abstract

Anatomical similarity across the neocortex has led to the common assumption that the circuitry is modular and performs stereotyped computations. Layer 5 pyramidal neurons (L5PNs) in particular are thought to be central to cortical computation because of their extensive arborisation and nonlinear dendritic operations. Here, we demonstrate that computations associated with dendritic Ca2+ plateaus in mouse L5PNs vary substantially between the primary and secondary visual cortices. L5PNs in the secondary visual cortex show reduced dendritic excitability and smaller propensity for burst firing. This reduced excitability is correlated with shorter apical dendrites. Using numerical modelling, we uncover a universal principle underlying the influence of apical length on dendritic backpropagation and excitability, based on a Na+ channel-dependent broadening of backpropagating action potentials. In summary, we provide new insights into the modulation of dendritic excitability by apical dendrite length and show that the operational repertoire of L5PNs is not universal throughout the brain.

Data availability

All data, analysis scripts and simulation code is available at https://github.com/ranczlab/Galloni.etal.2020

Article and author information

Author details

  1. Alessandro R Galloni

    Cortical Circuits Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Aeron Laffere

    Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8307-0079
  3. Ede Rancz

    Cortical Circuits Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    ede.rancz@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7951-1385

Funding

Wellcome (Sir Henry Dale Fellowship,104285/B/14/Z)

  • Ede Rancz

Royal Society (Sir Henry Dale Fellowship,104285/B/14/Z)

  • Ede Rancz

Boehringer Ingelheim Fonds (PhD Scholarship)

  • Alessandro R Galloni

Francis Crick Institute (PhD Scholarhip)

  • Alessandro R Galloni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brice Bathellier, CNRS, France

Ethics

Animal experimentation: All animal experiments were prospectively approved by the local ethics panel of the Francis Crick Institute (previously National Institute for Medical Research) and the UK Home Office under the Animals (Scientific Procedures) Act 1986 (PPL: 70/8935). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: February 4, 2020
  2. Accepted: May 27, 2020
  3. Accepted Manuscript published: May 28, 2020 (version 1)
  4. Version of Record published: July 3, 2020 (version 2)

Copyright

© 2020, Galloni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,057
    views
  • 496
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alessandro R Galloni
  2. Aeron Laffere
  3. Ede Rancz
(2020)
Apical length governs computational diversity of layer 5 pyramidal neurons
eLife 9:e55761.
https://doi.org/10.7554/eLife.55761

Share this article

https://doi.org/10.7554/eLife.55761

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.