Apical length governs computational diversity of layer 5 pyramidal neurons

  1. Alessandro R Galloni
  2. Aeron Laffere
  3. Ede Rancz  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. Birkbeck, University of London, United Kingdom

Abstract

Anatomical similarity across the neocortex has led to the common assumption that the circuitry is modular and performs stereotyped computations. Layer 5 pyramidal neurons (L5PNs) in particular are thought to be central to cortical computation because of their extensive arborisation and nonlinear dendritic operations. Here, we demonstrate that computations associated with dendritic Ca2+ plateaus in mouse L5PNs vary substantially between the primary and secondary visual cortices. L5PNs in the secondary visual cortex show reduced dendritic excitability and smaller propensity for burst firing. This reduced excitability is correlated with shorter apical dendrites. Using numerical modelling, we uncover a universal principle underlying the influence of apical length on dendritic backpropagation and excitability, based on a Na+ channel-dependent broadening of backpropagating action potentials. In summary, we provide new insights into the modulation of dendritic excitability by apical dendrite length and show that the operational repertoire of L5PNs is not universal throughout the brain.

Data availability

All data, analysis scripts and simulation code is available at https://github.com/ranczlab/Galloni.etal.2020

Article and author information

Author details

  1. Alessandro R Galloni

    Cortical Circuits Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Aeron Laffere

    Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8307-0079
  3. Ede Rancz

    Cortical Circuits Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    ede.rancz@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7951-1385

Funding

Wellcome (Sir Henry Dale Fellowship,104285/B/14/Z)

  • Ede Rancz

Royal Society (Sir Henry Dale Fellowship,104285/B/14/Z)

  • Ede Rancz

Boehringer Ingelheim Fonds (PhD Scholarship)

  • Alessandro R Galloni

Francis Crick Institute (PhD Scholarhip)

  • Alessandro R Galloni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were prospectively approved by the local ethics panel of the Francis Crick Institute (previously National Institute for Medical Research) and the UK Home Office under the Animals (Scientific Procedures) Act 1986 (PPL: 70/8935). All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Copyright

© 2020, Galloni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,125
    views
  • 502
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alessandro R Galloni
  2. Aeron Laffere
  3. Ede Rancz
(2020)
Apical length governs computational diversity of layer 5 pyramidal neurons
eLife 9:e55761.
https://doi.org/10.7554/eLife.55761

Share this article

https://doi.org/10.7554/eLife.55761

Further reading

    1. Neuroscience
    Charles R Heller, Gregory R Hamersky, Stephen V David
    Research Article

    Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.