Geometric models for robust encoding of dynamical information into embryonic patterns

  1. Laurent Jutras-Dubé
  2. Ezzat El-Sherif  Is a corresponding author
  3. Paul François  Is a corresponding author
  1. McGill University, Canada
  2. Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Abstract

During development, cells gradually assume specialized fates via changes of transcriptional dynamics, sometimes even within the same developmental stage. For anterior-posterior (AP) patterning in metazoans, it has been suggested that the gradual transition from a dynamic genetic regime to a static one is encoded by different transcriptional modules. In that case, the static regime has an essential role in pattern formation in addition to its maintenance function. In this work, we introduce a geometric approach to study such transition. We exhibit two types of genetic regime transitions, respectively arising through local or global bifurcations. We find that the global bifurcation type is more generic, more robust, and better preserves dynamical information. This could parsimoniously explain common features of metazoan segmentation, such as changes of periods leading to waves of gene expressions, 'speed/frequency-gradient' dynamics, and changes of wave patterns. Geometric approaches appear as possible alternatives to gene regulatory networks to understand development.

Data availability

https://github.com/laurentjutrasdube/Dual-Regime_Geometry_for_Embryonic_Patterning

The following data sets were generated

Article and author information

Author details

  1. Laurent Jutras-Dubé

    Physics, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4323-2840
  2. Ezzat El-Sherif

    Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
    For correspondence
    ezzat.el-sherif@fau.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1738-8139
  3. Paul François

    Physics, McGill University, Montreal, Canada
    For correspondence
    paul.francois2@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2223-839X

Funding

Simons Foundation (MMLS)

  • Laurent Jutras-Dubé
  • Paul François

Natural Sciences and Engineering Research Council of Canada (CREATE in Complex Dynamics)

  • Laurent Jutras-Dubé

Deutsche Forschungsgemeinschaft (EL 870/2-1)

  • Ezzat El-Sherif

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Jutras-Dubé et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,933
    views
  • 313
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laurent Jutras-Dubé
  2. Ezzat El-Sherif
  3. Paul François
(2020)
Geometric models for robust encoding of dynamical information into embryonic patterns
eLife 9:e55778.
https://doi.org/10.7554/eLife.55778

Share this article

https://doi.org/10.7554/eLife.55778

Further reading

    1. Developmental Biology
    Yufei Wu, Sean X Sun
    Insight

    Proteins that allow water to move in and out of cells help shape the development of new blood vessels.

    1. Developmental Biology
    2. Neuroscience
    Maria I Lazaro-Pena, Carlos A Diaz-Balzac
    Insight

    The ligand Netrin mediates axon guidance through a combination of haptotaxis over short distances and chemotaxis over longer distances.