Time-dependent cytokine and chemokine changes in mouse cerebral cortex following a mild traumatic brain injury

  1. David Tweedie  Is a corresponding author
  2. Hanuma Kumar Karnati
  3. Roger Mullins
  4. Chaim G Pick
  5. Barry J Hoffer
  6. Edward J Goetzl
  7. Dimitrios Kapogiannis
  8. Nigel H Greig
  1. National Institute on Aging, NIH, United States
  2. Sackler School of Medicine, Tel-Aviv University, Israel
  3. Case Western Reserve University, United States
  4. University of California Medical Center, United States

Abstract

Traumatic brain injury (TBI) is a serious global health concern, many individuals live with TBI-related neurological dysfunction. A lack of biomarkers of TBI has impeded medication development. To identify new potential biomarkers, we time-dependently evaluated mouse brain tissue and neuronally derived plasma extracellular vesicle proteins in a mild model of TBI with parallels to concussive head injury. Mice (CD-1, 30–40 g) received a sham procedure or 30 g weight-drop, and were euthanized 8, 24, 48, 72, 96 hours, 7, 14 and 30 days later. We quantified ipsilateral cortical proteins, many of which differed from sham by 8 hours post-mTBI, particularly GAS-1 and VEGF-B were increased while CXCL16 reduced, 23 proteins changed in 4 or more of the time points. Gene ontology pathways mapped from altered proteins over time related to pathological and physiological processes. Validation of proteins identified in this study may provide utility as treatment response biomarkers.

Data availability

All data generated by US NIH funded research is available to the public, the data generated in this study is available to the public. The data used to generate the Figures in the manuscript are provided as source data files.

Article and author information

Author details

  1. David Tweedie

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    For correspondence
    tweedieda@grc.nia.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8446-4544
  2. Hanuma Kumar Karnati

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Roger Mullins

    Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Chaim G Pick

    Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Barry J Hoffer

    Department of Neurological Surgery, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Edward J Goetzl

    Department of Medicine, University of California Medical Center, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dimitrios Kapogiannis

    Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Nigel H Greig

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3032-1468

Funding

National Institutes of Health (AG000944)

  • Nigel H Greig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brandon K Harvey, NIDA/NIH, United States

Ethics

Animal experimentation: AlI animal studies were conducted at the Intramural Research Program of the National Institute on Aging, Baltimore, MD, USA. Experimental animal protocols were approved by the Animal Care and Use Committee of the Intramural Research Program, National Institute on Aging (438-TGB-2022) and were in compliance with the guidelines for animal experimentation of the National Research Council (Committee for the Update of the Guide for the Care and Use of Laboratory Animals, 2011) and the National Institutes of Health (DHEW publication 85-23, revised, 1995).

Version history

  1. Received: February 6, 2020
  2. Accepted: August 14, 2020
  3. Accepted Manuscript published: August 17, 2020 (version 1)
  4. Accepted Manuscript updated: August 21, 2020 (version 2)
  5. Version of Record published: September 4, 2020 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,507
    views
  • 334
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Tweedie
  2. Hanuma Kumar Karnati
  3. Roger Mullins
  4. Chaim G Pick
  5. Barry J Hoffer
  6. Edward J Goetzl
  7. Dimitrios Kapogiannis
  8. Nigel H Greig
(2020)
Time-dependent cytokine and chemokine changes in mouse cerebral cortex following a mild traumatic brain injury
eLife 9:e55827.
https://doi.org/10.7554/eLife.55827

Share this article

https://doi.org/10.7554/eLife.55827

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.