Genomic architecture and evolutionary antagonism drive allelic expression bias in the social supergene of red fire ants

  1. Carlos Martinez-Ruiz  Is a corresponding author
  2. Rodrigo Pracana
  3. Eckart Stolle
  4. Carolina Ivon Paris
  5. Richard A Nichols
  6. Yannick Wurm  Is a corresponding author
  1. Queen Mary University of London, United Kingdom
  2. Universidad de Buenos Aires, Argentina

Abstract

Supergene regions maintain alleles of multiple genes in tight linkage through suppressed recombination. Despite their importance in determining complex phenotypes, our empirical understanding of early supergene evolution is limited. Here we focus on the young "social" supergene of fire ants, a powerful system for disentangling the effects of evolutionary antagonism and suppressed recombination. We hypothesize that gene degeneration and social antagonism shaped the evolution of the fire ant supergene, resulting in distinct patterns of gene expression. We test these ideas by identifying allelic differences between supergene variants, characterizing allelic expression across populations, castes and body parts, and contrasting allelic expression biases with differences in expression between social forms. We find strong signatures of gene degeneration and gene-specific dosage compensation. On this background, a small portion of the genes has the signature of adaptive responses to evolutionary antagonism between social forms.

Data availability

We deposited genomic and transcriptomic reads we generated from South American Solenopsis invicta on NCBI SRA (PRJNA542606). All analysis scripts used are available at https://github.com/wurmlab/2019-11-allelic_bias_in_fire_ant_supergene

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Carlos Martinez-Ruiz

    Department of Organismal Biology, Queen Mary University of London, London, United Kingdom
    For correspondence
    c.martinezruiz@qmul.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4817-0565
  2. Rodrigo Pracana

    Department of Organismal Biology, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Eckart Stolle

    Department of Organismal Biology, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Carolina Ivon Paris

    Departamento Ecología, Genética y Evolución, Universidad de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  5. Richard A Nichols

    Department of Organismal Biology, Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Yannick Wurm

    Department of Organismal Biology, Queen Mary University of London, London, United Kingdom
    For correspondence
    y.wurm@qmul.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3140-2809

Funding

NERC (NE/L00626X/1)

  • Yannick Wurm

NERC (NE/L002485/1)

  • Carlos Martinez-Ruiz

DAAD (570704 83)

  • Yannick Wurm

European Commission Marie Curie Actions (PIEF-GA-2013-623713)

  • Yannick Wurm

BBSRC (BB/K004204/1)

  • Yannick Wurm

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: We snap froze field-collected ants into liquid nitrogen. Ethical guidelines typically do not consider such invertebrates. However, we performed the experiments in a manner that minimized potential harm.

Copyright

© 2020, Martinez-Ruiz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,950
    views
  • 377
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carlos Martinez-Ruiz
  2. Rodrigo Pracana
  3. Eckart Stolle
  4. Carolina Ivon Paris
  5. Richard A Nichols
  6. Yannick Wurm
(2020)
Genomic architecture and evolutionary antagonism drive allelic expression bias in the social supergene of red fire ants
eLife 9:e55862.
https://doi.org/10.7554/eLife.55862

Share this article

https://doi.org/10.7554/eLife.55862

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Hans Tobias Gustafsson, Lucas Ferguson ... Oliver J Rando
    Research Article

    Among the major classes of RNAs in the cell, tRNAs remain the most difficult to characterize via deep sequencing approaches, as tRNA structure and nucleotide modifications can each interfere with cDNA synthesis by commonly-used reverse transcriptases (RTs). Here, we benchmark a recently-developed RNA cloning protocol, termed Ordered Two-Template Relay (OTTR), to characterize intact tRNAs and tRNA fragments in budding yeast and in mouse tissues. We show that OTTR successfully captures both full-length tRNAs and tRNA fragments in budding yeast and in mouse reproductive tissues without any prior enzymatic treatment, and that tRNA cloning efficiency can be further enhanced via AlkB-mediated demethylation of modified nucleotides. As with other recent tRNA cloning protocols, we find that a subset of nucleotide modifications leave misincorporation signatures in OTTR datasets, enabling their detection without any additional protocol steps. Focusing on tRNA cleavage products, we compare OTTR with several standard small RNA-Seq protocols, finding that OTTR provides the most accurate picture of tRNA fragment levels by comparison to "ground truth" Northern blots. Applying this protocol to mature mouse spermatozoa, our data dramatically alter our understanding of the small RNA cargo of mature mammalian sperm, revealing a far more complex population of tRNA fragments - including both 5′ and 3′ tRNA halves derived from the majority of tRNAs – than previously appreciated. Taken together, our data confirm the superior performance of OTTR to commercial protocols in analysis of tRNA fragments, and force a reappraisal of potential epigenetic functions of the sperm small RNA payload.