Whole-brain mapping of socially isolated zebrafish reveals that lonely fish are not loners

Abstract

The zebrafish was used to assess the impact of social isolation on behaviour and brain function. As in humans and other social species, early social deprivation reduced social preference in juvenile zebrafish. Whole-brain functional maps of anti-social isolated (lonely) fish were distinct from anti-social (loner) fish found in the normal population. These isolation-induced activity changes revealed profound disruption of neural activity in brain areas linked to social behaviour, social cue processing, and anxiety/stress. Several of the affected regions are modulated by serotonin, and we found that social preference in isolated fish could be rescued by acutely reducing serotonin levels.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hande Tunbak

    The Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3180-1401
  2. Mireya Cristina Vazquez-Prada

    The Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Michael Ryan

    The Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam Raymond Kampff

    Sainsbury Wellcome Centre, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Elena Dreosti

    Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
    For correspondence
    e.dreosti@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6738-7057

Funding

Wellcome (202465/Z/16/Z.)

  • Elena Dreosti

Gatsby Charitable Foundation (090843/F/09/Z)

  • Adam Raymond Kampff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peggy Mason, University of Chicago, United States

Ethics

Animal experimentation: All experiments were performed according to protocols approved by local ethical committee (AWERB Bloomsbury Campus UCL) and the UK Home Office. PAE2ECA7E

Version history

  1. Received: February 10, 2020
  2. Accepted: April 23, 2020
  3. Accepted Manuscript published: May 5, 2020 (version 1)
  4. Version of Record published: June 9, 2020 (version 2)

Copyright

© 2020, Tunbak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,668
    views
  • 810
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hande Tunbak
  2. Mireya Cristina Vazquez-Prada
  3. Thomas Michael Ryan
  4. Adam Raymond Kampff
  5. Elena Dreosti
(2020)
Whole-brain mapping of socially isolated zebrafish reveals that lonely fish are not loners
eLife 9:e55863.
https://doi.org/10.7554/eLife.55863

Share this article

https://doi.org/10.7554/eLife.55863

Further reading

    1. Medicine
    2. Neuroscience
    Yunlu Xue, Yimin Zhou, Constance L Cepko
    Research Advance

    Retinitis pigmentosa (RP) is an inherited retinal disease in which there is a loss of cone-mediated daylight vision. As there are >100 disease genes, our goal is to preserve cone vision in a disease gene-agnostic manner. Previously we showed that overexpressing TXNIP, an α-arrestin protein, prolonged cone vision in RP mouse models, using an AAV to express it only in cones. Here, we expressed different alleles of Txnip in the retinal pigmented epithelium (RPE), a support layer for cones. Our goal was to learn more of TXNIP’s structure-function relationships for cone survival, as well as determine the optimal cell type expression pattern for cone survival. The C-terminal half of TXNIP was found to be sufficient to remove GLUT1 from the cell surface, and improved RP cone survival, when expressed in the RPE, but not in cones. Knock-down of HSP90AB1, a TXNIP-interactor which regulates metabolism, improved the survival of cones alone and was additive for cone survival when combined with TXNIP. From these and other results, it is likely that TXNIP interacts with several proteins in the RPE to indirectly support cone survival, with some of these interactions different from those that lead to cone survival when expressed only in cones.

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.