Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma

  1. Nataša Pavlović
  2. Carlemi Calitz
  3. Kess Thanapirom
  4. Guiseppe Mazza
  5. Krista Rombouts
  6. Pär Gerwins
  7. Femke Heindryckx  Is a corresponding author
  1. Department of Medical Cell Biology, Uppsala University, Sweden
  2. Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London, United Kingdom
  3. Department of Radiology, Uppsala University Hospital, Sweden
14 figures, 3 tables and 3 additional files

Figures

Inhibiting IRE1α reduces tumor burden in vivo.

(A) Representative images of liver slides stained with hematoxylin and eosin (H and E), Sirius red and αSMA-antibodies. (B) tumor burden of mice with DEN-induced HCC treated with 4μ8C or …

Figure 2 with 2 supplements
Increased expression of ER-stress markers in mice with HCC.

(A) mRNA expression of ER-stress markers Edem1, Ero1b, Grp94, Herp, Atf4, Eif2ak3, Ddit3, and Hspa5 in liver tissue from healthy mice; and tumor tissue and surrounding non-tumoral tissue from mice …

Figure 2—figure supplement 1
Activation of the unfolded protein response is mainly located in the stroma of mice with HCC.

Liver tissue from mice with DEN-induced HCC, stained with αSMA-antibodies and co-stained with antibodies against (A) spliced XBP1, (B) total XBP1, (C) IRE1α (D) phopho-IRE1α, and (E) BIP. Scale bars …

Figure 2—figure supplement 2
Expression of ER-stress markers is localized in close vicinity to αSMA.

Immunofluorescent images from tissue from mice with DEN-induced HCC, stained with αSMA-antibodies and co-stained with antibodies against (A) spliced XBP1, (B) total XBP1, (C) IRE1α, (D) …

Activation of the unfolded protein response pathway is increased in patients with fibrotic HCC.

(A) Heat map showing gene-set enrichment analysis results from samples from fibrous HCC versus non-fibrous HCC. (C) Immunohistochemically stained liver biopsies from HCC-patients obtained from the …

Figure 4 with 1 supplement
Tumor cells secrete factors that induce ER-stress in stellate cells, which contributes to their activation.

(A) mRNA-expression of ER-stress markers ATF6, ATF4, EIF2AK3, GADD34, EDEM1, DDIT3 and HSPA5, in stellate cells (LX2) co-cultured with cancer cells (HepG2 or Huh7) and treated with 4μ8C or control. …

Figure 4—figure supplement 1
Secretion of TGFβ by tumor cells activates stellate cells and induces ER-stress.

(A) Concentration of TGFβ in medium from tumor cells (HepG2 or Huh7) grown in mono-culture or co-cultured with LX2-stellate cells, treated with 4μ8C or control. (B) Concentration of TGFβ in medium …

Inhibiting IRE1α decreases stellate cell activation in human liver 3D scaffolds engrafted with stellate cells and tumor cells.

(A) Representative images of H and E and Sirius red stained slides of decellularized human liver scaffolds engrafted with LX2 stellate cells and HepG2-tumor cells treated with 4μ8C or control. (B) …

Inhibition of IRE1α decreases tumor cell proliferation.

(A) PCNA mRNA-expression of HepG2 or Huh7-cells grown with LX2-cells in transwell inserts and treated with the IRE1α-inhibitor 4μ8C or control. (B) Relative cell number of LX2 and HepG2 or (C) LX2 …

Inhibition of IRE1α decreases cell proliferation and improves liver function in human liver scaffolds engrafted with stellate cells and tumor cells.

(A) PCNA and (B) HNF4A expression of human liver scaffolds engrafted with HepG2-tumor cells and LX2-stellate cells, treated with 4μ8C or control. (C) Representative images of tumor cells (HepG2) and …

Figure 8 with 1 supplement
Inhibition of IRE1α decreases cell migration.

(A) mRNA-expression of pro-metastatic markers MMP9 and (B) MMP1 in HepG2 and Huh7-cells co-cultured with LX2-cells and treated with 4μ8C or control. (C) Scratch wound on HepG2-cells and LX2-cells …

Figure 8—figure supplement 1
Inhibiting IRE1α decreases chemotaxis.

(A) Migration plots of LX2-cells co-cultured with HepG2-cells exposed to an FBS-gradient (increasing towards the right) and treated with control or (B) 4μ8C (C) Quantification of total migration and …

Figure 9 with 1 supplement
Silencing IRE1α in LX2-cells mimics 4μ8C.

(A) ERN1-mRNA-expression of LX2-cells transfected with IRE1α-siRNA (si-IRE1α) or mock-transfected (Scr) (B) PCNA-mRNA-expression of HepG2-cells co-cultured with IRE1α-silenced LX2-cells or controls …

Figure 9—figure supplement 1
Proliferation and migration after silencing IRE1α in LX2-cells.

(A) Proliferation of spheroids of HepG2-cells and IRE1α-silenced LX2-cells or controls (B) Images and (C) quantification of αSMA-stained spheroids with HepG2-cells and IRE1α-silenced LX2-cells or …

Inhibiting IRE1α alters generation of ROS.

(A) intracellular ROS-levels in LX2, HepG2, and Huh7 cells treated with 50 μM 4μ8C, 100 μM 4μ8C or controls. (B) intracellular ROS-levels in LX2, HepG2 and Huh7 cells transfected with IRE1α-siRNA …

Author response image 1
Effect of ER-stress on ROS production.

(A) the ER-stress inducer increases ROS levels in HepG2 and Huh7 cells. (B) The ROS-scavenging effect of 4u8C increases over time.

Author response image 2
Effect of silencing IRE1a in different co-culture conditions.

(A) LX2-cells transfected with si-RNA targeting IRE1a or mock-transfected (Scr) in mono-culture or co-culture with tumor cells (HepG2 and Huh7). (B) HepG2 or Huh7-cells transfected with si-RNA …

Author response image 3
Visible bands in lane 2 and 4, which corresponds to LX2-monocultures and LX2+Hep2 co-cultures treated with 4u8C.
Author response image 4
Protein levels of IRE1a in mock transfected and si-IRE1a transfected Huh7 cells.

Tables

Table 1
A proteomics array using the Olink Mouse Exploratory assay – source data Figure 1F.
CTLDenDEN+4 u8cStatistical significance
Protein nameBiological processMeanSt. DevAverageSt. DevAverageSt. DevDEN vs CtrlDEN vs 4 u8CCtrl vs 4 u8c
ClmpNot prognostic in HCC1.680.142.971.002.480.64*
Yes1HCC promotor7.110.297.510.207.440.19*
Foxo1Tumor suppressor4.150.064.120.733.870.49
Pla2g4aHCC promotor3.420.385.701.365.040.80**
Prdx5HCC promotor7.370.497.230.266.670.34*
TgfaTumor growth factor5.360.526.810.646.930.88**
EpoUnfavorable prognotic marker3.200.343.710.353.370.33
Axin1HCC promotor4.240.384.800.374.390.35
FstHCC promotor5.870.318.040.737.500.71**
NadkNot prognostic in HCC10.100.1310.140.1810.300.27
Snap29Not prognostic in HCC7.700.327.870.327.620.30
S100a4HCC promotor2.730.747.010.626.850.97**
KitlgMetastasis2.480.423.740.623.310.98*
Gfra1HCC promotor4.400.355.070.404.920.39*
Ppp1r2Not prognostic in HCC4.370.164.860.464.470.43
Cyr61HCC promotor2.400.534.141.643.131.22*
AhrNot prognostic in HCC6.950.467.680.747.380.64
Ccl2HCC promotor4.590.589.692.048.93.**
QdprNot prognostic in HCC7.710.117.720.147.540.15
FasHCC promotor8.660.188.830.188.700.18
Riox2HCC promotor7.100.157.710.387.590.14**
EpcamHCC promotor1.560.333.161.143.270.89*
Ccl3Prognostic marker1.490.394.421.863.731.07**
Crim1HCC promotor2.460.283.711.093.210.56**
HgfTumor growth factor6.690.357.941.017.410.71*
Sez6l2HCC promotor−0.290.150.610.530.190.29*
Il1aInflammation and fibrosis6.650.518.350.657.620.54**
Ddah1HCC promotor8.040.228.180.057.840.18*
Acvrl1Not prognostic in HCC2.090.183.441.312.810.47
Cxcl9Inflammation and fibrosis3.680.867.711.686.651.58**
Map2k6Not prognostic in HCC7.750.157.980.417.880.28
Casp3Tumor surrpressor9.220.199.740.359.430.26
PdgfbTumor growth factor3.520.314.961.273.970.40*
Igsf3Unfavorable prognotic marker3.120.284.190.823.640.72
Cxcl1HCC promotor3.770.405.740.785.060.51**
Pak4HCC promotor3.470.424.390.683.930.54
LplNot prognostic in HCC1.660.402.440.452.020.60
Dctn2Unfavorable prognotic marker5.481.315.670.704.980.55
Ntf3Not prognostic in HCC2.160.272.800.712.270.40
Tnfsf12HCC promotor5.280.356.000.765.590.62
Ccl20Unfavorable prognotic marker5.200.345.920.815.530.66
Fli1HCC promotor1.910.223.731.382.980.83
Tpp1Unfavorable prognotic marker3.670.384.240.643.730.50
Parp1Unfavorable prognotic marker10.300.7210.930.4910.510.62
Table 2
Genes the contributed to the core-enrichment of the GSEA.
ProbeDescriptionRank Gene listRank Metric scoreCore enrichmentUPR branch
ASNSAsparagine synthetase (glutamine-hydrolyzing) [Source:HGNC Symbol;Acc:HGNC:753]2070.940YesPerk
PPP2R5BProtein phosphatase two regulatory subunit B'beta [Source:HGNC Symbol;Acc:HGNC:9310]4230.821YesIre1a
CCL2C-C motif chemokine ligand 2 [Source:HGNC Symbol;Acc:HGNC:10618]8470.689YesIre1a and Perk
EXOSC9Exosome component 9 [Source:HGNC Symbol;Acc:HGNC:9137]10040.654YesIre1a and Perk
WIPI1WD repeat domain, phosphoinositide interacting 1 [Source:HGNC Symbol;Acc:HGNC:25471]10220.649YesIre1a
KDELR3KDEL endoplasmic reticulum protein retention receptor 3 [Source:HGNC Symbol;Acc:HGNC:6306]11060.635YesIre1a
SHC1SHC adaptor protein 1 [Source:HGNC Symbol;Acc:HGNC:10840]26910.432YesIre1a
TPP1Tripeptidyl peptidase 1 [Source:HGNC Symbol;Acc:HGNC:2073]28840.414YesIre1a
HDGFHeparin binding growth factor [Source:HGNC Symbol;Acc:HGNC:4856]32350.386YesIre1a
TLN1Talin 1 [Source:HGNC Symbol;Acc:HGNC:11845]32640.384YesIre1a
EXTL3Exostosin like glycosyltransferase 3 [Source:HGNC Symbol;Acc:HGNC:3518]34880.365YesIre1a
TSPYL2TSPY like 2 [Source:HGNC Symbol;Acc:HGNC:24358]36800.350YesIre1a
MBTPS1Membrane-bound transcription factor peptidase, site 1 [Source:HGNC Symbol;Acc:HGNC:15456]39960.327YesAtf6
PDIA5Protein disulfide isomerase family A member 5 [Source:HGNC Symbol;Acc:HGNC:24811]45300.294YesIre1a
DCTN1Dynactin subunit 1 [Source:HGNC Symbol;Acc:HGNC:2711]46380.287YesIre1a
DNAJC3DnaJ heat-shock protein family (Hsp40) member C3 [Source:HGNC Symbol;Acc:HGNC:9439]47610.281YesIre1a
SULT1A4Sulfotransferase family 1A member 4 [Source:HGNC Symbol;Acc:HGNC:30004]49380.272YesIre1a
PARNPoly(A)-specific ribonuclease [Source:HGNC Symbol;Acc:HGNC:8609]50370.266YesPerk
ADD1Adducin 1 [Source:HGNC Symbol;Acc:HGNC:243]53750.250YesIre1a
ERN1Endoplasmic reticulum to nucleus signaling 1 [Source:HGNC Symbol;Acc:HGNC:3449]54110.248YesIre1a
Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus musculus)Sv129 miceTaconic129S6HCC mouse model, Heindryckx et al., 2010; Heindryckx et al., 2012
Cell line (Homo sapiens)HepG2ATCCHB-8065
Cell line (Homo sapiens)Huh7Gifted, Karolinska institute
Cell line (Homo sapiens)LX2Sigma-AldrichSCC064
Transfected construct (human)si-IRE1αThermoFishers2004320,1–1 µM
Transfected construct (human)Si-Ctrl; ScrThermoFisher43908430,1–1 µM
AntibodyKI67 (rat monoclonal)eBioscienceSolA151:100
AntibodyEPCAM (rabbit polyclonal)Abcamab719161:100
AntibodySpliced XBP1 (goat monoclonal)AbcamAb855461:50
AntibodyTotal XBP1 (Rabbit polyclonal)AbcamAb371525 µg/ml
AntibodyIRE1a (rabbit polyclonal)AbcamAb370731 µg/ml
Antibodyp-IRE1 (rabbit polyclonal)AbNovaPAB124351:100
AntibodyαSMA (Rabbit Polyclonal)ThermoFisher7104871:200
AntibodyαSMA (Goat monocolonal)AbcamAb210271–2 µg/ml
AntibodyBIP (goat polyclonal)AbcamAb210271 µg/ml
AntibodyVinculin (Mouse monoclonal)ThermoFisher14-9777-821–5 µg/ml
Peptide, recombinant proteinPst-IThermoFisherER0615
Commercial assay or kitPierce BCA-protein assay kitThermoFisher233225
Commercial assay or kitEZNA RNA isolation Kit IIVWRR6934-02
Commercial assay or kitRNeasy Universal Mini KitQiagen73404
Commercial assay or kitDiva Decloacker solutionBiocareDV2004
Commercial assay or kitDCFDA - Cellular ROS Detection Assay KitAbcamab113851
Chemical compound, drugN-Nitrosodiethylamine, DENSigma-Aldrich1002877809
Chemical compound, drug4μ8CSigma-AldrichSML0949-25MGHeindryckx et al., 2016
Chemical compound, drugSB-431541, TGF-ß receptor inhibitorTocris161410 μM
Chemical compound, drugResazurinSigma-AldrichR7017-1G1:80 dilution
Commercial assay or kitIngenio electroporation solutionMirus Bio LLCMIR50114Ice-cold
Commercial assay or kitCellTracker Red CMTPXThermoFisherC345521 μM
Commercial assay or kitCellTracker Green CMFDAThermoFisherC29251 μM
Other12-well CorningCostar TranswellplatesSigma-Aldrich3460Calitz et al., 2020
OtherCorning CostarUltra-Low attachment 96-well platesSigma-AldrichCLS3471Calitz et al., 2019
OtherCellDirectorGradienTech11-001-10Fuchs et al., 2020

Additional files

Download links