A muscle-epidermis-glia signaling axis sustains synaptic specificity during allometric growth in C. elegans

Abstract

Synaptic positions underlie precise circuit connectivity. Synaptic positions can be established during embryogenesis and sustained during growth. The mechanisms that sustain synaptic specificity during allometric growth are largely unknown. We performed forward genetic screens in C. elegans for regulators of this process and identified mig-17, a conserved ADAMTS metalloprotease. Proteomic mass spectrometry, cell biological and genetic studies demonstrate that MIG-17 is secreted from cells like muscles to regulate basement membrane proteins. In the nematode brain, the basement membrane does not directly contact synapses. Instead, muscle-derived basement membrane coats one side of the glia, while glia contact synapses on their other side. MIG-17 modifies the muscle-derived basement membrane to modulate epidermal-glial crosstalk and sustain glia location and morphology during growth. Glia position in turn sustains the synaptic pattern established during embryogenesis. Our findings uncover a muscle-epidermis-glia signaling axis that sustains synaptic specificity during the organism’s allometric growth.

Data availability

All data is presented in the figures or supplementary figures

Article and author information

Author details

  1. Jiale Fan

    Department of Neurosurgery, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science and the Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Tingting Ji

    Department of Neurosurgery, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science and the Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Kai Wang

    Department of Neurosurgery, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science and the Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Jichang Huang

    State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Mengqing Wang

    Department of Neurosurgery, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science and the Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Manning

    Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaohua Dong

    Department of Neurosurgery, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science and the Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yanjun Shi

    Department of Neurosurgery, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science and the Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xumin Zhang

    State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Zhiyong Shao

    Department of Neurosurgery, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science and the Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
    For correspondence
    shaozy@fudan.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  11. Daniel A Colón-Ramos

    Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, United States
    For correspondence
    daniel.colon-ramos@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0223-7717

Funding

National Natural Science Foundation of China (31471026,31872762)

  • Jiale Fan
  • Tingting Ji
  • Kai Wang
  • Jichang Huang
  • Mengqing Wang
  • Xiaohua Dong
  • Yanjun Shi
  • Xumin Zhang
  • Zhiyong Shao

NIH Office of the Director (DP1NS111778)

  • Laura Manning
  • Daniel A Colón-Ramos

National Institutes of Health (R01NS076558)

  • Laura Manning
  • Daniel A Colón-Ramos

Howard Hughes Medical Institute (Faculty Scholar)

  • Daniel A Colón-Ramos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Version history

  1. Received: February 10, 2020
  2. Accepted: April 5, 2020
  3. Accepted Manuscript published: April 7, 2020 (version 1)
  4. Version of Record published: April 17, 2020 (version 2)

Copyright

© 2020, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,677
    Page views
  • 331
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jiale Fan
  2. Tingting Ji
  3. Kai Wang
  4. Jichang Huang
  5. Mengqing Wang
  6. Laura Manning
  7. Xiaohua Dong
  8. Yanjun Shi
  9. Xumin Zhang
  10. Zhiyong Shao
  11. Daniel A Colón-Ramos
(2020)
A muscle-epidermis-glia signaling axis sustains synaptic specificity during allometric growth in C. elegans
eLife 9:e55890.
https://doi.org/10.7554/eLife.55890

Share this article

https://doi.org/10.7554/eLife.55890

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.