The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation

  1. Kanji Okumoto
  2. Mahmoud El Shermely
  3. Masanao Natsui
  4. Hidetaka Kosako
  5. Ryuichi Natsuyama
  6. Toshihiro Marutani
  7. Yukio Fujiki  Is a corresponding author
  1. Kyushu University, Japan
  2. Tokushima University, Japan

Abstract

Most of peroxisomal matrix proteins including a hydrogen peroxide (H2O2)-decomposing enzyme, catalase, are imported in a peroxisome-targeting signal type-1 (PTS1)-dependent manner. However, little is known about regulation of the membrane-bound protein import machinery. Here, we report that Pex14, a central component of the protein translocation complex in peroxisomal membrane, is phosphorylated in response to oxidative stresses such as H2O2 in mammalian cells. The H2O2-induced phosphorylation of Pex14 at Ser232 suppresses peroxisomal import of catalase in vivo and selectively impairs in vitro the interaction of catalase with the Pex14-Pex5 complex. A phosphomimetic mutant Pex14-S232D elevates the level of cytosolic catalase, but not canonical PTS1-proteins, conferring higher cell resistance to H2O2. We thus suggest that the H2O2-induced phosphorylation of Pex14 spatiotemporally regulates peroxisomal import of catalase, functioning in counteracting action against oxidative stress by the increase of cytosolic catalase.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, and 6.

Article and author information

Author details

  1. Kanji Okumoto

    Faculty of Sciences, Kyushu University, Fukuoka, Japan
    Competing interests
    No competing interests declared.
  2. Mahmoud El Shermely

    Faculty of Sciences, Kyushu University, Fukuoka, Japan
    Competing interests
    Mahmoud El Shermely, Mahmoud El Shermely is affiliated with Basilea Pharmaceutica International Ltd.. The author has no financial interests to declare..
  3. Masanao Natsui

    Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
    Competing interests
    No competing interests declared.
  4. Hidetaka Kosako

    Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    No competing interests declared.
  5. Ryuichi Natsuyama

    Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
    Competing interests
    No competing interests declared.
  6. Toshihiro Marutani

    Faculty of Sciences, Kyushu University, Fukuoka, Japan
    Competing interests
    No competing interests declared.
  7. Yukio Fujiki

    Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
    For correspondence
    yfujiki@kyudai.jp
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8138-6376

Funding

The authors declare that there was no funding for this work.

Reviewing Editor

  1. Ramanujan S Hegde, MRC Laboratory of Molecular Biology, United Kingdom

Publication history

  1. Received: February 10, 2020
  2. Accepted: August 24, 2020
  3. Accepted Manuscript published: August 24, 2020 (version 1)
  4. Version of Record published: September 17, 2020 (version 2)

Copyright

© 2020, Okumoto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,883
    Page views
  • 309
    Downloads
  • 17
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kanji Okumoto
  2. Mahmoud El Shermely
  3. Masanao Natsui
  4. Hidetaka Kosako
  5. Ryuichi Natsuyama
  6. Toshihiro Marutani
  7. Yukio Fujiki
(2020)
The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation
eLife 9:e55896.
https://doi.org/10.7554/eLife.55896

Further reading

    1. Cell Biology
    Robert J Tower et al.
    Research Article

    De novo limb regeneration after amputation is restricted in mammals to the distal digit tip. Central to this regenerative process is the blastema, a heterogeneous population of lineage-restricted, dedifferentiated cells that ultimately orchestrates regeneration of the amputated bone and surrounding soft tissue. To investigate skeletal regeneration, we made use of spatial transcriptomics to characterize the transcriptional profile specifically within the blastema. Using this technique, we generated a gene signature with high specificity for the blastema in both our spatial data, as well as other previously published single-cell RNA-sequencing transcriptomic studies. To elucidate potential mechanisms distinguishing regenerative from non-regenerative healing, we applied spatial transcriptomics to an aging model. Consistent with other forms of repair, our digit amputation mouse model showed a significant impairment in regeneration in aged mice. Contrasting young and aged mice, spatial analysis revealed a metabolic shift in aged blastema associated with an increased bioenergetic requirement. This enhanced metabolic turnover was associated with increased hypoxia and angiogenic signaling, leading to excessive vascularization and altered regenerated bone architecture in aged mice. Administration of the metabolite oxaloacetate decreased the oxygen consumption rate of the aged blastema and increased WNT signaling, leading to enhanced in vivo bone regeneration. Thus, targeting cell metabolism may be a promising strategy to mitigate aging-induced declines in tissue regeneration.

    1. Cell Biology
    Ellen Busschers et al.
    Research Article

    MAF1, a key repressor of RNA polymerase III-mediated transcription, has been shown to promote mesoderm formation in vitro. Here, we show that MAF1 plays a critical role in the regulation of osteoblast differentiation and bone mass. A high bone mass phenotype was noted in mice with a global deletion of Maf1 (Maf1-/- mice). However, osteoblasts isolated from Maf1-/- mice showed reduced osteoblastogenesis ex vivo. Therefore, we determined the effect of MAF1 overexpression specifically in cells from the mesenchymal lineage (Prx1-Cre;LSL-MAF1 mice). These mice showed increased bone mass. Ex vivo, cells from Prx1-Cre;LSL-MAF1 mice showed enhanced osteoblastogenesis concordant with their high bone mass phenotype. Thus, the high bone mass phenotype in Maf1-/- mice is likely due to the confounding effects of the global absence of Maf1 in Maf1-/- mice. MAF1 overexpression promoted osteoblast differentiation and shRNA-mediated Maf1 downregulation inhibited differentiation of ST2 cells, overall indicating MAF1 enhances osteoblast formation. We also found that, in contrast to MAF1 overexpression, other perturbations that repress RNA pol III transcription, including Brf1 knockdown and chemical inhibition of RNA pol III by ML-60218, inhibited osteoblast differentiation. All perturbations that decrease RNA pol III transcription, however, enhanced adipogenesis in ST2 cell cultures. RNA-seq was used to determine the basis for these opposing actions on osteoblast differentiation. The modalities used to perturb RNA pol III transcription resulted in distinct gene expression changes, indicating that this transcription process is highly sensitive and triggers diverse gene expression programs and phenotypic outcomes. Specifically, MAF1 induced genes in ST2 cells known to promote osteoblast differentiation. Furthermore, genes that are induced during osteoblast differentiation displayed codon bias. Together, these results reveal a novel role for MAF1 and RNA pol III-mediated transcription in osteoblast fate determination and differentiation and bone mass regulation.