The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation

Abstract

Most of peroxisomal matrix proteins including a hydrogen peroxide (H2O2)-decomposing enzyme, catalase, are imported in a peroxisome-targeting signal type-1 (PTS1)-dependent manner. However, little is known about regulation of the membrane-bound protein import machinery. Here, we report that Pex14, a central component of the protein translocation complex in peroxisomal membrane, is phosphorylated in response to oxidative stresses such as H2O2 in mammalian cells. The H2O2-induced phosphorylation of Pex14 at Ser232 suppresses peroxisomal import of catalase in vivo and selectively impairs in vitro the interaction of catalase with the Pex14-Pex5 complex. A phosphomimetic mutant Pex14-S232D elevates the level of cytosolic catalase, but not canonical PTS1-proteins, conferring higher cell resistance to H2O2. We thus suggest that the H2O2-induced phosphorylation of Pex14 spatiotemporally regulates peroxisomal import of catalase, functioning in counteracting action against oxidative stress by the increase of cytosolic catalase.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3, 4, and 6.

Article and author information

Author details

  1. Kanji Okumoto

    Faculty of Sciences, Kyushu University, Fukuoka, Japan
    Competing interests
    No competing interests declared.
  2. Mahmoud El Shermely

    Faculty of Sciences, Kyushu University, Fukuoka, Japan
    Competing interests
    Mahmoud El Shermely, Mahmoud El Shermely is affiliated with Basilea Pharmaceutica International Ltd.. The author has no financial interests to declare..
  3. Masanao Natsui

    Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
    Competing interests
    No competing interests declared.
  4. Hidetaka Kosako

    Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
    Competing interests
    No competing interests declared.
  5. Ryuichi Natsuyama

    Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
    Competing interests
    No competing interests declared.
  6. Toshihiro Marutani

    Faculty of Sciences, Kyushu University, Fukuoka, Japan
    Competing interests
    No competing interests declared.
  7. Yukio Fujiki

    Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
    For correspondence
    yfujiki@kyudai.jp
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8138-6376

Funding

The authors declare that there was no funding for this work.

Copyright

© 2020, Okumoto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,304
    views
  • 465
    downloads
  • 54
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kanji Okumoto
  2. Mahmoud El Shermely
  3. Masanao Natsui
  4. Hidetaka Kosako
  5. Ryuichi Natsuyama
  6. Toshihiro Marutani
  7. Yukio Fujiki
(2020)
The peroxisome counteracts oxidative stresses by suppressing catalase import via Pex14 phosphorylation
eLife 9:e55896.
https://doi.org/10.7554/eLife.55896

Share this article

https://doi.org/10.7554/eLife.55896

Further reading

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.