Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes

  1. Shuang Yang
  2. Kriti Bahl
  3. Hui-Ting Chou
  4. Jonathan Woodsmith
  5. Ulrich Stelzl
  6. Thomas Walz  Is a corresponding author
  7. Maxence V Nachury  Is a corresponding author
  1. Rockefeller University, United States
  2. UCSF, United States
  3. University of Graz, Austria

Abstract

Dynamic trafficking of G protein-coupled receptors (GPCRs) out of cilia is mediated by the BBSome. In concert with its membrane recruitment factor, the small GTPase ARL6/BBS3, the BBSome ferries GPCRs across the transition zone, a diffusion barrier at the base of cilia. Here, we present the near-atomic structures of the BBSome by itself and in complex with ARL6GTP, and we describe the changes in BBSome conformation induced by ARL6GTP binding. Modeling the interactions of the BBSome with membranes and the GPCR Smoothened (SMO) reveals that SMO, and likely also other GPCR cargoes, must release their amphipathic helix 8 from the membrane to be recognized by the BBSome.

Data availability

Structural data have been deposited into the Worldwide Protein Data Bank (wwPDB) and the Electron Microscopy Data Bank (EMDB). The EM density map for the BBSome has been deposited under accession code EMD-21251 and the EM density map for the BBSome-ARL6 complex has been deposited under accession code EMD-21259. The corresponding atomic models have been deposited under accession codes 6VNW and 6VOA.

The following data sets were generated

Article and author information

Author details

  1. Shuang Yang

    Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kriti Bahl

    Department of Ophthalmology, UCSF, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Hui-Ting Chou

    Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jonathan Woodsmith

    Pharmaceutical Chemistry, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0790-3726
  5. Ulrich Stelzl

    Pharmaceutical Chemistry, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2500-3585
  6. Thomas Walz

    Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, United States
    For correspondence
    twalz@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2606-2835
  7. Maxence V Nachury

    Department of Ophthalmology, UCSF, San Francisco, United States
    For correspondence
    maxence.nachury@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4918-1562

Funding

National Institute of General Medical Sciences (R01-GM089933)

  • Maxence V Nachury

Research to Prevent Blindness (Stein Innovator Award A131667)

  • Maxence V Nachury

National Eye Institute (R01- EY031462)

  • Thomas Walz
  • Maxence V Nachury

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,586
    views
  • 481
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuang Yang
  2. Kriti Bahl
  3. Hui-Ting Chou
  4. Jonathan Woodsmith
  5. Ulrich Stelzl
  6. Thomas Walz
  7. Maxence V Nachury
(2020)
Near-atomic structures of the BBSome reveal the basis for BBSome activation and binding to GPCR cargoes
eLife 9:e55954.
https://doi.org/10.7554/eLife.55954

Share this article

https://doi.org/10.7554/eLife.55954

Further reading

    1. Cell Biology
    Inês Sequeira
    Insight

    A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.

    1. Cell Biology
    2. Genetics and Genomics
    Jisun So, Olivia Strobel ... Hyun Cheol Roh
    Tools and Resources

    Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity. By integrating bulk nuclear RNA-seq from adipocyte nuclei of different sizes, we identify distinct adipocyte subpopulations categorized by size and functionality. These subpopulations follow two divergent trajectories, adaptive and pathological, with their prevalence varying by depot. Specifically, we identify a key molecular feature of dysfunctional hypertrophic adipocytes, a global shutdown in gene expression, along with elevated stress and inflammatory responses. Furthermore, our differential gene expression analysis reveals distinct contributions of adipocyte subpopulations to the overall pathophysiology of adipose tissue. Our study establishes a robust snRNA-seq method, providing novel insights into the biological processes involved in adipose tissue remodeling during obesity, with broader applicability across diverse biological systems.