1. Neuroscience
Download icon

The GTPase Rab26 links synaptic vesicles to the autophagy pathway

  1. Beyenech Binotti
  2. Nathan J Pavlos
  3. Dietmar Riedel
  4. Dirk Wenzel
  5. Gerd Vorbrüggen
  6. Amanda M Schalk
  7. Karin Kühnel
  8. Janina Boyken
  9. Christian Erck
  10. Henrik Martens
  11. John JE Chua  Is a corresponding author
  12. Reinhard Jahn  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. University of Western Australia, Australia
  3. Georg-August-University Göttingen, Germany
  4. Synaptic Systems GmbH, Germany
Research Article
  • Cited 70
  • Views 4,382
  • Annotations
Cite this article as: eLife 2015;4:e05597 doi: 10.7554/eLife.05597


Small GTPases of the Rab family not only regulate target recognition in membrane traffic but also control other cellular functions such as cytoskeletal transport and autophagy. Here we show that Rab26 is specifically associated with clusters of synaptic vesicles in neurites. Overexpression of active but not of GDP-preferring Rab26 enhances vesicle clustering, which is particularly conspicuous for the EGFP-tagged variant, resulting in a massive accumulation of synaptic vesicles in neuronal somata without altering the distribution of other organelles. Both endogenous and induced clusters co-localize with autophagy-related proteins such as Atg16L1, LC3B and Rab33B but not with other organelles. Furthermore, Atg16L1 appears to be a direct effector of Rab26 and binds Rab26 in its GTP-bound form, albeit only with low affinity. We propose that Rab26 selectively directs synaptic and secretory vesicles into preautophagosomal structures, suggesting the presence of a novel pathway for degradation of synaptic vesicles.


eLife digest

Our brain contains billions of cells called neurons that form an extensive network through which information is readily exchanged. These cells connect to each other via junctions called synapses. Our developing brain starts off with far more synapses than it needs, but the excess synapses are destroyed as the brain matures. Even in adults, synapses are continuously made and destroyed in response to experiences and learning.

Inside neurons there are tiny bubble-like compartments called vesicles that supply the synapses with many of the proteins and other components that they need. There is a growing body of evidence that suggests these vesicles are rapidly destroyed once a synapse is earmarked for destruction, but it is not clear how this may occur.

Here, Binotti, Pavlos et al. found that a protein called Rab26 sits on the surface of the vesicles near synapses. This protein promotes the formation of clusters of vesicles, and a membrane sometimes surrounds these clusters. Further experiments indicate that several proteins involved in a process called autophagy—where unwanted proteins and debris are destroyed—may also be found around the clusters of vesicles.

Autophagy starts with the formation of a membrane around the material that needs to be destroyed. This seals the material off from rest of the cell so that enzymes can safely break it down. Binotti, Pavlos et al. found that one of the autophagy proteins—called Atg16L—can bind directly to Rab26, but only when Rab26 is in an ‘active’ state.

These findings suggest that excess vesicles at synapses may be destroyed by autophagy. Further work will be required to establish how this process is controlled and how it is involved in the loss of synapses.



Synapses are highly dynamic structures exhibiting frequent turnover. The most dramatic phase of synaptic remodeling occurs during development when the majority of initially formed synapses are eliminated while the final synaptic network is being generated. However, even in the adult brain there is persistent turnover of synapses, mostly in response to experience and learning (Caroni et al., 2012; Chung and Barres, 2012).

Formation of a new synapse involves the establishment of highly specialized structures containing arrays of unique membrane and scaffold proteins, which necessitates close coordination between the presynaptic axon and the postsynaptic dendrite. Components of these structures are delivered by microtubule-based transport, although some of the proteins are locally synthesized in dendrites (Steward and Levy, 1982; Holt and Schuman, 2013). Similarly, delivery of synaptic membranes (such as synaptic vesicles) and active zone precursors to the synapse relies on kinesin-mediated transport (Hirokawa et al., 2010). A lot has been learned in recent years about the signaling events and the downstream effectors involved in synaptogenesis as well as the mechanisms by which individual components are recruited and maintained (Caroni et al., 2012).

Less is known, however, about the molecular cascades involved in synaptic elimination. In principle, two mechanisms of elimination co-exist that are not mutually exclusive and may indeed be coordinated with each other: ‘attack from the outside’ or ‘self-destruction from the inside’. Elimination from the outside is usually executed by microglial cells but the underlying signaling network is complex, and astrocytes have also recently been appreciated to play a major role in this process (Chung and Barres, 2012; Stephan et al., 2012; Clarke and Barres, 2013; Maor-Nof and Yaron, 2013). In cell autonomous elimination, synaptic components may either be (i) recycled, that is, being removed in a functionally intact form for the use at another site, or (ii) degraded. With the exception of some recent evidence showing that synaptic vesicles can be exchanged between neighboring synapses, whether synaptic components can be reused after having been operational in a functional synapse remains largely unexplored (Darcy et al., 2006; Kamin et al., 2010). Conversely, an increasing body of evidence supports the view that synaptic components are rapidly degraded once a synapse is earmarked for elimination. Unsurprisingly, the ubiquitin-proteasome system is emerging as one of the central players, both at presynaptic (Yao et al., 2007; Jiang et al., 2010) and postsynaptic sites ([Bedford et al., 2001; Patrick et al., 2003; Lee et al., 2004], for a review see Mabb and Ehlers (2010)). At the presynaptic site, the ubiquitin system is not only involved in synaptic elimination, but also in the general regulation of synaptic plasticity (Muralidhar and Thomas, 1993; Campbell and Holt, 2001; DiAntonio et al., 2001; Murphey et al., 2003; Yao et al., 2007; Yi and Ehlers, 2007; Lee et al., 2008). For instance the protein RIM, a crucial hub for organizing active zones that form the release site for synaptic vesicles, was recently shown to be rapidly turned over upon ubiquitination, resulting in loss of synaptic function (Yao et al., 2007). Furthermore, an increasing number of ubiquitin-modifying enzymes have been described from synapses (particularly E3-ligases) (Ding and Shen, 2008).

In contrast to the emerging role of the ubiquitin proteasome system, little information is currently available regarding the mechanisms by which synaptic membrane proteins are eliminated. At the postsynaptic site, ubiquitin-dependent pathways are clearly involved in the regulation of surface receptor density (Patrick et al., 2003; Kato et al., 2005; Schwarz et al., 2010). However, only scant information is available about the turnover of membrane proteins at the presynaptic site where a complicated and autonomous vesicle recycling machinery needs to deal with many 100s of synaptic vesicles. Surprisingly, the mechanisms by which synaptic vesicles are eliminated have thus far received little attention. By analogy to non-neuronal cells, it is frequently assumed that synaptic vesicle membrane proteins follow the canonical endosomal-lysosomal route for degradation which involves ubiquitination and recognition by the ESCRT machinery after being delivered to endosomes, followed by the formation of multivesicular bodies, retrograde transport, and ultimately fusion with lysosomes (Katzmann et al., 2002; Raiborg and Stenmark, 2009). However, aside from a few hints from a recent proteomic study, whether synaptic vesicle proteins are ubiquitinated remains unclear (Na et al., 2012). Similarly, whether sequestration into the lumen of multivesicular bodies is involved and, if so, to what extent is unknown. Indeed, multivesicular bodies are infrequently observed in axons and typically appear in response to pathological (dystrophic or toxic) conditions (for review see [Von Bartheld and Altick, 2011]). Furthermore, no information is currently available concerning the involvement of the ESCRT pathway in the elimination of presynaptic components. Intriguingly, recent studies implicate the involvement of clathrin-dependent pathways in targeting plasma membrane components to autophagosomes, hinting at the potential involvement of this mechanism in the turnover of synaptic vesicles recovered by endocytosis following the release of their neurotransmitter content (Ravikumar et al., 2010).

In this study we report about data suggesting the presence of a novel pathway for the degradation of synaptic and secretory vesicles, which involves selective sequestration of vesicle clusters into structures resembling early autophagosomes. This pathway is triggered by Rab26, a little-studied member of the Rab-GTPase superfamily that is related to the exocytotic Rab3/Rab27 subgroup. We show that Rab26 selectively localizes to presynaptic membrane vesicles and recruits both Atg16L1 and Rab33B, two components of the pre-autophagosomal machinery. Remarkably, these autophagosomal structures are filled almost exclusively with synaptic vesicles and proteins typically associated with large dense-core vesicles. Overexpression of EGFP-tagged Rab26, but not of FLAG-tagged or wild-type (WT) Rab26, induces the formation of giant autophagosomes in the cell bodies of hippocampal neurons—a phenotype that is mirrored upon transfection in HeLa cells. Based on these findings, we conclude that Rab26 may selectively channel synaptic vesicles into pre-autophagosomes and, thus, may represent a new regulator of synapse turnover.


Rab26 is a GTPase enriched on synaptic vesicles with properties reminiscent of Rab27b

Previously we reported that synaptic vesicles highly purified from rat brain contain more than 30 different Rab-GTPases (Takamori et al., 2006). Of these, a subgroup of Rabs including Rab3a, Rab3b, Rab3c, and Rab27b were highly enriched in the vesicle fraction (Pavlos et al., 2010). These Rabs are known to function in the regulation of exocytosis and constitute part of the ‘secretory Rab subfamily’ (Pereira-Leal and Seabra, 2001; Fukuda, 2008; Pavlos and Jahn, 2011). Rab26, a comparatively uncharacterized member of the Rab superfamily, is also closely related to this subgroup. Since we detected Rab26 on purified synaptic vesicles in two previous independent proteomic studies (Takamori et al., 2006; Pavlos et al., 2010), we decided to further explore its endogenous localization in neurons. To this end, we raised a mouse monoclonal antibody that is specific for Rab26 and does not cross-react with other related Rab proteins including Rab27 (Figure 1—figure supplement 1).

First, we used immunoblotting to monitor the subcellular distribution of Rab26 during the purification of synaptic vesicles from the rat brain. As shown in Figure 1A, Rab26 co-purified with synaptic vesicle markers (as indicated here using synaptophysin), with the highest enrichment being observed in the synaptic vesicle (SV) fraction obtained after purification using consecutive density gradients and size exclusion chromatography. This fraction has been previously shown to be comprised almost exclusively of synaptic vesicles (at least 95% purity) (Huttner et al., 1983). For independent confirmation, we carried out immunoisolation of synaptic vesicles using beads (Eupergit C1Z) covalently coupled with monoclonal antibodies specific for Rab26 or synaptophysin. As shown in Figure 1B, both antibodies resulted in the isolation of membranes highly enriched in both synaptophysin and Rab26. As a control, the membranes were solubilized with the detergent Triton X-100 prior to immunoisolation (Tx-IP). In this case, only the respective antigens were isolated (Figure 1B), thus validating the specificity of the isolation procedure. We also verified the nature of the immunoisolated vesicles by transmission electron microscopy (TEM). As previously reported, synaptophysin-beads were densely covered by small vesicular profiles with a size distribution typical for synaptic vesicles (i.e., 40–45 nm) (Figure 1C) (Burger et al., 1989; Takamori et al., 2000). Rab26 beads were similarly populated with these vesicles, albeit to a lesser extent (Figure 1D). Nevertheless, quantitative assessment of the size distribution of the bead-bound vesicles revealed no distinguishable difference between the vesicles bound to synaptophysin and Rab26 beads, respectively (Figure 1E).

Figure 1 with 1 supplement see all
The small GTPase Rab26 co-purifies with synaptic vesicles.

(A) Rab26 co-purifies with synaptic vesicles using conventional fractionation. Synaptic vesicles were purified from rat brain homogenate (H) by two consecutive differential centrifugation steps, yielding a low-speed pellet (P1) and a supernatant (S1), followed by a second centrifugation yielding a pellet P2 (containing synaptosomes and mitochondria) and a supernatant (S2). P2 was then lysed by osmotic shock, followed by centrifugation to separate large particles including synaptic junctional complexes (LP1) and a supernatant from which small membranes enriched in synaptic vesicles are collected by high-speed centrifugation (LP2, supernatant LS2 only contains soluble proteins). LP2 was further fractionated by sucrose density gradient centrifugation followed by chromatography on controlled pore glass beads where larger membrane fragments (PK1) were separated from synaptic vesicles (SV) (Huttner et al., 1983). 12 µg of proteins of each fraction was analyzed by SDS-PAGE and immunoblotting for Rab26 and the synaptic vesicle marker synaptophysin. Note that Rab26 copurifies with synaptophysin, displaying a pattern typical of synaptic vesicle proteins. (B) Synaptic vesicles were immunoisolated using Eupergit C1Z/methacrylate beads to which monoclonal antibodies specific for Rab26 or synaptophysin (Syph) respectively, were covalently coupled. The beads were incubated with a resuspended LP2 fraction and collected (see [Burger et al., 1989; Takamori et al., 2000] for details). SN, supernatant obtained after bead incubation; Bound, immunoisolates; Tx-SN and Tx-IP, same as before but the Input sample was solubilized with Triton X-100 to a final concentration of 1% before immunoprecipitation. For immunoblotting, 4% of the input or supernatant samples and 33% of bound samples were loaded for analyses. Note that Rab26 and synaptophysin cofractionate with the immunobeads irrespective of the antibody employed. Incubation with synaptophysin beads quantitatively depleted Rab26 from the supernatant whereas depletion of synaptophysin by Rab26-beads was less complete. In contrast, only the respective antigen was recovered from the detergent-solubilized samples. Asterisks denote IgG heavy and the light chains of the antibodies used for isolation, respectively. (C and D) Electron microscopy showing ultrathin sections of methacrylate beads containing bound organelles that were captured with synaptophysin- (C) or Rab26-specific (D) antibodies, respectively. (E) Size distribution (diameter) of bead-associated vesicles. Note that both populations exhibit a very similar and homogeneous size distribution, with a peak between 40–45 nm as is characteristic for synaptic vesicles (Takamori et al., 2006).


Like other GTPases, Rabs function as molecular switches which undergo conformational changes during GDP/GTP cycling (Grosshans et al., 2006; Stenmark, 2009). This cycle is frequently paralleled by a membrane ‘on/off’ association—dissociation cycle. Membrane association is achieved following posttranslational modification of Rabs by geranyl-geranylation, a prerequisite for membrane insertion and Rab activation. Conversely, membrane dissociation is regulated by a specific adaptor protein, termed GDP dissociation inhibitor (GDI), which sequesters GDP-bound Rabs from membranes to the cytosol following GTP-hydrolysis (Araki et al., 1990; Ullrich et al., 1993; Goody et al., 2005; Wu et al., 2010). Therefore, to gain initial insights into the functional membrane association/dissociation cycle of Rab26, we assessed whether it could be extracted from synaptic vesicle membranes following GDI treatment. For this, we incubated a fraction enriched in synaptic vesicles (LP2) with purified recombinant GDI in the presence of GDP or GTPγS. The latter analogue was used to overcome the intrinsically high GTPase activity of Rabs (see ‘Discussion’). Consistent with previous observations, Rab3 is rapidly retrieved from synaptic vesicles membranes by GDI in the presence of GDP (Araki et al., 1990; Chou and Jahn, 2000; Pavlos et al., 2010). By comparison, Rab26 is resistant to GDI-mediated membrane extraction, even when GDP is present in excess (Figure 2A). This feature is reminiscent of the biochemical characteristics of Rab27b, which also fails to be retrieved from synaptic vesicles by GDI treatment in vitro (Pavlos et al., 2010). Rather, Rab27b is known to dimerize and persist on synaptic vesicle membranes in its GDP-bound form (Chavas et al., 2007; Pavlos et al., 2010). Therefore, to assess whether GDP-bound Rab26 exhibits a similar tendency to oligomerize, we additionally performed co-immunoprecipitation experiments between FLAG- and EGFP-tagged wild-type (WT) Rab26 and its variants containing mutations that selectively interfere with the Rab26 GDP/GTP switch domain(s). As shown in Figure 2B, co-precipitation of FLAG-tagged Rab26 was only observed when cells were transfected with either wild-type EGFP-Rab26 or with a GDP-preferring variant (Rab26T77N, henceforth referred to as Rab26TN). By comparison, little to no co-precipitation was observable when the ‘nucleotide empty’ Rab26 (Rab26N177I, Rab26NI) or ‘GTP-locked’ (Rab26Q123L, Rab26QL) variants were employed. Together, these data indicate that Rab26 is a synaptic vesicle protein that oligomerizes preferentially in its GDP-bound form, thereby precluding GDI-mediated membrane extraction—a feature shared with its synaptic vesicle relative Rab27b.

GDP-Rab26 cannot be extracted by GDI from membranes and forms oligomers.

(A) Rab26 is resistant to extraction by GDI from synaptic vesicle membranes. An enriched synaptic vesicle fraction (LP2) was incubated with GTPγS or GDP (500 µM) for 15 min at 37°C. His-GDI (5 µM) or PBS (control, first lane) was added and the samples were incubated for an additional 45 min at 37°C. The membranes were then separated from the soluble fraction by centrifugation and analyzed by immunoblotting. While Rab3a was efficiently depleted from synaptic vesicles, Rab26 persisted on membranes. IB, immunoblotting. (B) Rab26 oligomerizes in a GDP-dependent manner. HEK293 cells transiently co-expressing EGFP-Rab26 variants (WT, QL, TN or NI) with FLAG-Rab26WT were lysed in detergent containing buffer followed by immunoprecipitation of EGFP-Rabs. Co-precipitation of FLAG-Rab26WT was observed with EGFP-Rab26 WT and even more efficiently with the GDP-preferring variant Rab26TN whereas co-precipitation with the nucleotide-empty variant (Rab26NI) was reduced and binding to the GTP-preferring variant (Rab26QL) was abolished. IP, immunoprecipitation.


Next, to study its subcellular localization in more detail, we immunostained primary cultures of rat hippocampal neurons for Rab26. First, the distribution of endogenous Rab26 was compared with that of synaptotagmin-I, one of the major membrane constituents of synaptic vesicles. As shown in Figure 3A, Rab26 labeling resulted in a conspicuous punctate staining pattern that overlapped with, although was not identical to, the pattern obtained with synaptotagmin-I antibodies. Higher magnification of neurites revealed that most of the Rab26 positive puncta colocalized with synaptotagmin-I. In contrast, many puncta positive for synaptotagmin-I were not stained with the Rab26 antibody (Figure 3B, arrows show colocalization).

Figure 3 with 2 supplements see all
Endogenous and expressed GTP-Rab26 variants localize to a subset of synaptic vesicles in cultured hippocampal neurons.

In (AG), representative line scans of the two channels are shown below each set. In the y-axis, F (a.u.) indicates fluorescence intensity (arbitrary units). (A and B) Localization of endogenous Rab26 (detected with the newly generated monoclonal anti Rab26 antibody) and synaptotagmin-I (Syt-I) in neurites of dissociated hippocampal neurons (DIV 15) reveals that Rab26 colocalizes with a subset of Syt-I positive puncta (B, arrows). (CE) Expression of FLAG-tagged Rab26 variants in neurites (DIV 9 cultures 48hr after transfection). Both FLAG-Rab26WT (C) and QL (D) co-localize with a subset of synaptotagmin positive puncta (Syt-I), whereas FLAG-Rab26TN (E) exhibited a more diffuse distribution. (F) Overexpression of EGFP-Rab26WT exhibits a distribution comparable to endogenous and FLAG-tagged Rab26 in neuritis where it colocalizes with synaptophysin (Syph). (G) Rab26-positive clusters contain actively recycling vesicles. Hippocampal cultures were incubated overnight with a labeled antibody directed against a lumenal epitope of synaptotagmin (Syt-I clone 604.2 conjugated to Oyster-550), resulting in uptake during endocytosis. EGFP-Rab26WT is present in recycled synaptic vesicles as evident from the co-localization with synaptotagmin-I positive puncta. (H) Localization of YFP-tagged Rab26 variants at the Drosophila neuromuscular junction (third instar larvae). The Rab26 variants (Rab26wt, GTP-preferring Rab26Q250L, and GDP-preferring Rab26T204N), were expressed using elav-Gal4. Neuromuscular junctions of third instar larvae expressing these Rab26 variants were stained with anti-GFP (green) and for endogenous cysteine string protein as vesicle marker (anti-Csp, red).


To shed more light on the intracellular distribution of Rab26, neurons were transiently transfected with variants of FLAG-tagged Rab26 and then labeled for FLAG and synaptotagmin 1 (Figure 3). The staining pattern obtained with Rab26WT (Figure 3C) and with Rab26QL (the GTP-preferring variant) (Figure 3D) was very similar to that of endogenous Rab26, showing a high degree of overlap with endogenous synaptotagmin 1. In contrast, the GDP-preferring Rab26TN exhibited a more diffuse but still somewhat granular pattern that displayed no significant co-localization with synaptotagmin 1 (Figure 3E). A similar staining pattern was also observed when EGFP-tagged wildtype Rab26 was used, with the fusion protein again colocalizing with synaptic vesicle markers (in this case synaptophysin) (Figure 3F) and with the neuropeptide RFP-NPY but not with the early endosomal marker/Rab5 effector EEA1 (Figure 3—figure supplement 1A,B, respectively). This suggests that Rab26 is likely to traffic in a pathway distinct from Rab5.

Next, we tested whether the Rab26 positive puncta represent synapses undergoing exo-endocytosis. To monitor this, live hippocampal neuronal cultures expressing EGFP-Rab26 were pre-incubated overnight with a fluorescently-conjugated antibody specific for the luminal domain of synaptotagmin-I. This antibody can only bind to synaptotagmin when the luminal domain of the protein is exposed to the extracellular surface following synaptic vesicle exocytosis, and is thus used to conveniently identify active synapses as well as synaptic vesicles that have undergone exo-endocytosis (Kraszewski et al., 1995; Fernandez-Alfonso et al., 2006). As shown in Figure 3G, many of the EGFP-Rab26 puncta colocalized with vesicles labeled with this antibody, thereby confirming that these Rab26-positive vesicles originated from endocytosis of vesicles that previously had undergone at least one round of exocytosis.

Rab26 is one of the Rab GTPases conserved between mammals and Drosophila, with the genome of latter encoding three alternatively spliced isoforms. According to a systematic analysis of all Drosophila Rab proteins, Rab26 is expressed specifically in neurons at all developmental stages (larval and pupal development, adults flies) (Chan et al., 2011). To test whether the distribution of Rab26 in Drosophila resembles that in cultured hippocampal neurons, we expressed YFP-tagged versions of wild-type (WT), GTP-preferring (RabQ250L) and GDP-preferring (Rab26T204N) Rab26 using the pan neuronal elav-Gal4 driver (Zhang et al., 2007). Although the tagged Rab26 protein variants were expressed throughout development, no lethality or delayed development was observed (data not shown). Consistent with previous observations, analysis of third instar larvae nerve-muscle preparations revealed an exclusive localization of Rab26 to presynaptic compartments of the neuromuscular junction without staining of axons and cell bodies (Figure 3—figure supplement 2; see also [Chan et al., 2011]). Remarkably, expression of wild-type and of the gain-of-function (QL) Rab26 resulted in the appearance of large vesicle clusters within the presynaptic boutons whereas the GDP-preferring form (TN) was diffusely localized. This indicated that, like in hippocampal neurons, formation of these clusters is dependent on the nucleotide-bound state of Rab26 (Figure 3H). These Rab26-positive compartments are present in neuromuscular junction boutons as indicated by staining with anti-horseradish peroxidase (HRP) (Figure 3—figure supplement 2) and showed a partial overlap with the synaptic vesicle protein cysteine string protein (Csp) (Figure 3H) (Zinsmaier et al., 1990). Conspicuously, large Rab26-positive structures often showed intense Csp staining at their borders. Importantly, Rab26 is excluded from active zones immunostained for the Bruchpilot (Brp), a scaffold protein specifically localized to active zones (Figure 3—figure supplement 2) (Wagh et al., 2006).

Rab26 is associated with pre-autophagosomal compartments

Whereas the distribution of endogenous and tagged-expressing Rab26 variants was comparable in neurites, expression of EGFP-Rab26WT in cultured hippocampal neurons resulted in a unique and highly conspicuous phenotype that was not observed with endogenous Rab26, untagged or FLAG-tagged Rab26 and that has not been previously reported for any other EGFP-tagged Rab GTPase. In the soma, EGFP-Rab26WT induced the formation of large vesicular structures that, in some instances, filled the major part of the neuronal cytoplasm (Figure 4). These structures were intensely positive for both synaptic vesicle (Figure 4A,B) and large dense core vesicle markers, that is, the two types of neuronal secretory vesicles that usually do not show significant overlap (Figure 4C and Figure 4—figure supplement 1C). Intriguingly, the overlap with Rab3A, the major Rab-GTPase associated with synaptic vesicles, was less apparent. Double labeling with a variety of compartment-specific markers revealed no overlap with early endosomes or Golgi (Figure 4—figure supplement 1A,B, respectively) but some, albeit limited, overlap with lysosomes (Figure 4D).

Figure 4 with 1 supplement see all
Expression of EGFP-Rab26WT in cultured hippocampal neurons induces formation of large GFP-positive clusters in the neuronal cell bodies.

(AC): GFP-positive clusters colocalize with markers for synaptic and large dense core vesicles. (A and B) EGFP-Rab26WT clusters contain synaptobrevin (Sybv) and Rab3a. (C) Co-expression of EGFP-Rab26WT with RFP-NPY results in almost complete overlap of both proteins in these clusters (C). (D) Partial overlap is also observable with the lysosomal membrane protein LAMP2. DIV 10, scale bar, 5 µm. Line scans of select vesicle clusters (denoted by solid white lines in merged panel) signify the relative correlation between the individual fluorescent channels. F (a.u.) indicates fluorescence intensity (arbitrary units).


To better understand the nature of these structures we carried out immunogold-TEM on ultrathin cryosections of transfected neurons. As shown in Figure 5A, the soma contained large clusters of numerous small vesicles that were positive for both EGFP-Rab26WT and synaptobrevin (Sybv). In many cases, these clusters were rather homogenous, but occasionally also contained larger vesicles and mitochondria (Figure 5B). Although no systematic quantification was performed, some of these clusters reached enormous dimensions containing possibly 1000s of small vesicles (Figure 5—figure supplement 1). In some cases, these clusters were surrounded by a single and/or double membrane (Figure 5C, inset), although this was somewhat variable. We also assessed neuromuscular junctions of Drosophila strains overexpressing YFP-Rab26WT by TEM. Here, dense clusters of vesicles (devoid of surrounding membranes) were regularly observable that were clearly set apart from surrounding synaptic vesicles (Figure 5D, indicated by an arrow) but were clearly absent in controls.

Figure 5 with 1 supplement see all
Ultrastructure of EGFP-Rab26 induced vesicle clusters in cultured hippocampal neurons and in neuromuscular junctions of Drosophila third instar larvae.

(AC) Ultrathin cryosections obtained from hippocampal neurons expressing EGFP-Rab26WT were immunogold labeled for EGFP and synaptobrevin (Sybv, monoclonal antibody 69.1 specific for synaptobrevin 2) and analyzed by electron microscopy. In the soma of hippocampal neurons organelles surrounded by one or two (C, inset, arrow) membranes were densely packed with small vesicles and very occasionally other organelles (e.g., mitochondria, m). Immunogold labeling for both EGFP and synaptobrevin was concentrated both on vesicles present inside and the surrounding membrane. Scale bar in insert, 50 nm. (D) Ultrathin sections of neuromuscular junctions obtained from Drosophila third instar larvae. Control animals show scattered vesicles of a somewhat heterogeneous size, typical for this developmental stage (Rasse et al., 2005). Synapses of a strain expressing YFP-Rab26WT using the elavG::UAS system (elavG::UAS Rab26WT) display frequent clusters of densely packed vesicles (arrow) that are separated from the surrounding vesicles but lack a surrounding membrane.


As described above, in neurites Rab26 is associated with large clusters containing synaptic vesicle proteins regardless of whether endogenous Rab26 is visualized or whether Rab26 is overexpressed. Thus, it is conceivable that the induction of these vesicle clusters is an intrinsic property of GTP-Rab26, which is enhanced by the weak homo-dimerization of EGFP and YFP (Shaner et al., 2005). What could be the identity of these clusters? Considering their striking resemblance of these clusters to autophagosomal precursors, we hypothesized that these clusters may represent autophagosomes at various stages of formation and/or maturation.

Autophagy is a degradative pathway during which cellular contents are enclosed by a double-membrane (i.e., the isolation membrane) and then delivered to lysosomes for disposal (for review see e.g., [Mizushima et al., 2011; Lamb et al., 2013]). The pathway is initiated by two ubiquitin-like conjugation systems that operate in a sequential manner. The first conjugates the ubiqutin-like protein Atg12 to Atg5 which is then recruited by Atg16L1 to the pre-autophagosome structure. This complex then recruits a LC3 family member, a second ubiquitin-like molecule, and attaches it covalently to phosphatidylethanolamine in an E3-ligase like reaction (Klionsky and Schulman, 2014). Since LC3 remains associated with the autophagosomal membrane until its delivery to the lysosome, it is considered to be the most reliable marker for autophagosomes (Klionsky et al., 2012).

Therefore, to test whether the Rab26 containing clusters are linked to the autophagy pathway, we next checked for association with autophagosome-related proteins. First, we assessed for colocalization between Rab26 and Atg16L1, a component of pre-autophagosomes (Mizushima et al., 2003; Ravikumar et al., 2010). For this purpose, hippocampal neurons transiently expressing EGFP-Rab26WT were immunostained for endogenous Atg16L1. Indeed, an almost perfect colocalization between Atg16L1 and Rab26-positive clusters was detected in neuronal cell bodies (Figure 6A), thereby identifying these clusters as autophagosomal precursors. Next, we stained untransfected neurons for endogenous Rab26 and Atg16L1. Again, a high degree of overlap was observed between Rab26 and Atg16L1 in clusters decorating neurites (Figure 6B) but not in cell bodies which remained largely unstained (not shown). Strong overlap with Atg16L1 was also observed when neurons were transfected with FLAG-Rab26WT and/or FLAG-Rab26QL, but not with FLAG-Rab26TN (Figure 6C). This indicated that the association of Rab26 with autophagosomes depends on the GTP-form of the protein. This GTP-dependency was similarly noted in HeLa cells following ectopic expression of Rab26. In this instance, overexpression of GTP-bound forms (WT and QL), but not GDP-bound (TN) form, of EGFP-Rab26 led to the formation of large Atg16L1-positive clusters (Figure 6—figure supplement 1A–C). Analysis by immunogold-TEM again revealed that these clusters consisted of small but often heterogeneous vesicles, partially surrounded by membranes, with EGFP labeling detected both on vesicles within clusters as well as on their encapsulating membrane(s) (Figure 6—figure supplement 1D).

Figure 6 with 1 supplement see all
Clusters containing GTP-Rab26 colocalize with autophagosome-specific proteins both in cell bodies and dendrites of cultured hippocampal neurons.

Arrows indicate co-localization. (A) Somatic clusters induced by expression of EGFP-Rab26WT co-localize with endogenous Atg16L1. (B and C) In neurites, Atg16L1 co-localizes with clusters of endogenous Rab26 (non-transfected, DIV 15, panel B) and with clusters containing FLAG-tagged Rab26WT and Rab26QL, but not with Rab26TN (transfected, DIV 9, panel C). (D) Similar colocalization patterns were obtained from neurites expressing FLAG-Rab26 variants and autophagosomes labeled by GFP-LC3B. Note that occasional puncta were observed for the GDP-preferring variant Rab26TN that, however, showed no overlap with LC3B (arrowhead). DIV 9. (E and F) Co-expression of FLAG-Rab26WT and EGFP-Rab33WT in hippocampal neurons. In the soma (E), EGFP-Rab33 in primary restricted to a perinuclear structure reminiscent of the Golgi apparatus whereas an almost perfect overlap was observed between the Rab33 and Rab26 in peripheral puncta lining neurites (F). DIV 8.


Transient association of Atg16L1 to pre-autophagosomal structures enables the recruitment and membrane attachment of LC3 family members that persist on the autophagosomal membranes until degradation. Therefore, to assess whether the Rab26/Atg16L1 clusters recruit LC3 to membranes, we co-transfected cultured hippocampal neurons with GFP-tagged LC3B (one of the eight known LC3 family members) and FLAG-tagged Rab26 variants. Co-expression of GFP-LC3 and active forms FLAG-Rab26 (WT and QL) resulted in a localization pattern comparable to that observed for Atg16L1 (Figure 6D), thereby verifying the nature of these compartments as autophagosomes. Interestingly, however, LC3 recruitment was not observed when the EGFP-tagged Rab26WT was overexpressed (not shown, see ‘Discussion’).

Taken together, the above findings indicate a novel functional link between a Rab GTPase and a hitherto unknown autophagy pathway in neurons that appears selective for synaptic and/or secretory vesicles, tentatively termed ‘vesiculophagy’. Indeed, there is now a growing body evidence implicating several Rabs (Rab1, Rab7, Rab9, Rab11, Rab24, Rab32, and Rab33, inclusive) in canonical autophagy (for a comprehensive review [Chua et al., 2011]). Among these, Rab33, a Golgi resident Rab, participates in the formation of autophagosome precursors by recruiting Atg16L1 (a Rab33 effector) to isolation membranes (Itoh et al., 2008). Given that Rab26 colocalizes with Atg16L1, we checked for potential cooperation between Rab26 and Rab33 in neurons. For this, hippocampal neurons were co-transfected with FLAG-Rab26WT and EGFP-Rab33BWT. As shown in Figure 6E, EGFP-Rab33BWT was largely restricted to the perinuclear/Golgi region in the soma which showed no appreciable overlap with FLAG-Rab26WT. On the other hand, significant overlap between Rab26 and Rab33 was observed in more peripheral puncta lining neurites (Figure 6F). Together these data imply that the autophagy-pathway regulated by Rab26 may functionally intersect with Rab33.

Atg16L1 is an effector of Rab26

The overlap between Rab26 and Rab33 prompted us to further investigate whether Atg16L1 may also be an effector of Rab26. To explore this possibility, we performed co-immunoprepitation experiments between FLAG-tagged Rab26 (WT, QL or TN) and endogenous Atg16L1 in HeLa cells. As shown in Figure 7A, all three FLAG-tagged Rab26 variants were efficiently immunoprecipitated with the FLAG antibody. Immunoblotting for endogenous Atg16L1 from the same immunoprecipitates revealed co-precipitation between Atg16L1 and Rab26QL. By comparison, little to no Atg16L1 was detectable in the precipitates of Rab26-WT and Rab26TN, respectively, indicating that the interaction between Rab26 and Atg16L1 is GTP-dependent.

Figure 7 with 1 supplement see all
Atg16 is an effector of GTP-Rab26.

(A) Co-Immunoprecipitation of FLAG-tagged Rab26 variants expressed in HeLa cells with endogenous Atg16L1 protein. Immunoprecipitation was carried out following lysis in detergent-containing buffer and clearance by centrifugation to remove cell debris. Note that only the GTP-preferring QL variant of Rab26 showed significant binding to Atg16L1 (arrow). (B) GST pulldown of purified recombinantly expressed GST-Rab26 variants with a pre-formed complex of His-tagged versions of Atg5 and the N-terminal domain of Atg16L1 (Atg16NT). Note that Atg16NT selectively interacted with the GTP-preferring QL-variant of Rab26.


In parallel, we performed GST-pulldown assays to verify the results from the coIP experiments. For this, purified bacterially expressed recombinant Rab26 variants (QL or TN), tagged with GST were incubated with a preassembled complex of Atg5 and the N-terminal fragment of Atg16L1 containing its coiled coil domain (Atg16NT). In agreement with our immunoprecipitation studies, GST-pulldown revealed an interaction between Atg16L1 and Rab26, with Atg16L1 binding to the QL and to a lesser extent the TN-variant of Rab26 (Figure 7B), with the latter being further reduced upon repetitive washings (not shown). Atg5 remains bound in this complex. To further examine the interaction, we analyzed the binding between Rab26 and Atg16L1 using analytical gel filtration. Surprisingly, formation of Rab26(QL)-ATG16L1 complexes were not detectable with this approach (Figure 7—figure supplement 1). As a positive control, we carried out the same experiment using Rab33(QL) and ATG16L1. Here, complex formation was detectable with this approach. Thus, while both IP and pull-down experiments show that RAB26 binds ATG16L1 in a GTP-dependent manner, this binding appears to be weaker than the interaction between Rab33 and ATG16L1.


In the present study we have combined multiple complementary biochemical and cell biological approaches to demonstrate that the small GTPase Rab26 is specifically associated with synaptic vesicles. Intriguingly, Rab26 appears to be particularly enriched in large clusters of synaptic vesicles to which the autophagy proteins Atg16L1, LC3 and Rab33B are recruited, suggesting that they represent pre-autophagosomal compartments. We show further that, at least when using overexpression of EGFP-tagged Rab26, such clusters are also formed in cell bodies where they are enclosed by a single (and in some instances a double) isolation membrane. Based on these observations, we conclude that Rab26 provides a direct link between synaptic vesicles and the core autophagy machinery thereby uncovering a novel and selective autophagy pathway (tentatively named ‘vesiculophagy’) that may regulate synapse turnover.

Rab26 is a secretory GTPase resembling Rab27b in its molecular properties but differing in its function

Rab26 is most closely related to the secretory GTPases Rab3 and Rab27, which led to the conclusion that it may perform similar functions in membrane traffic (Fukuda, 2008). This view is supported by reports showing association of Rab26 with zymogen granules in exocrine cells (Nashida et al., 2006) and by the observation that overexpression of the dominant-negative form abolishes the formation of zymogen granules (Tian et al., 2010; Li et al., 2012). More recently, Rab26 has been found to be associated with lysosomes in zymogen-secreting cells (Jin and Mills, 2014) implying that its functions in secretory cells extend beyond that of exocytosis. In our previous work (Takamori et al., 2006; Pavlos et al., 2010), Rab26 was identified among the list of Rab proteins (up-to-30) enriched on highly purified synaptic vesicles. Our present data now show that this association is exclusive, with Rab26 being absent from other organelles such as early endosomes, paralleling the distribution of other secretory Rabs. On the other hand, the preferential association of Rab26 with large clusters of synaptic vesicles and its conspicuous absence from smaller boutons positive for synaptic vesicle markers is clearly distinct from Rab3 and Rab27b and indicates that Rab26 may not be contributing to the canonical function of these Rabs in regulated exocytosis.

Intriguingly, in contrast to for example, Rab3 and Rab5, Rab26 cannot be extracted from synaptic vesicle membranes by GDI in its GDP-form—a feature it shares with Rab27b. Rather, Rab26 exhibits a tendency to oligomerize in the GDP-form, again a feature shared with Rab27b and perhaps with some others such as Rab11 and Rab9, which crystallize as dimers in the GDP-state (Pasqualato et al., 2004; Wittmann and Rudolph, 2004; Chavas et al., 2007). It is somewhat surprising that, along with the GDP-bound variant, wild-type Rab26 also appears to oligomerize (albeit to a lesser extent). However, this might be explained by the known high intrinsic GTP-hydrolysis rates of wild-type and native Rab proteins which would render a percentage of wild-type Rab26 inactive (approximately 40% by co-immunoprecipitation), thereby prompting its oligomerization on membranes and hence preclude its GDI-extraction from synaptic vesicles. By comparison, the propensity of the ‘GDP-locked’ variant (Rab26TN) to rapidly oligomerize would likely result a steric clash with the GDI-related Rab escort protein (REP), which is required for prenylation and delivery of new synthesized Rabs to their cognate membranes (Andres et al., 1993). Such a scenario would be in keeping with the predominantly cytosolic distribution pattern observed in neurons expressing FLAG/EGFP-tagged Rab26TN.

Perhaps the most conspicuous feature of Rab26 is that it is not only preferentially associated with secretory vesicle clusters but actually induces their formation in a GTP-dependent manner as becomes apparent upon the expression of exogenous Rab26 variants in both neurons and non-neuronal cells. This is most dramatically observed with the EGFP-tagged variant suggesting that the weak homodimerization tendency of EGFP enhances the phenotype (note that no other EGFP-tagged Rab exhibits similar features including the most abundant secretory GTPase, Rab3a). At present, the exact mechanism underlying this clustering phenotype is unclear. Nevertheless, since the GTP-form of Rab26 does not oligomerize, it is unlikely that clustering is effected by homophilic Rab26 interactions. Rather, it possible that clustering is mediated by a hitherto unknown effector protein. This effector is probably distinct from Atg16L1 as overexpression of EGFP-Rab33B (that also recruits Atg16L1) does not induce such clusters (Figure 6, and data not shown). However, given that the central terminal region of Atg16L1 has a tendency for homo-multimerization, this possibility cannot be excluded (Mizushima et al., 2003; Ishibashi et al., 2011). Intriguingly, our findings agree with a recent report according to which overexpression of Rab26 in exocrine cell lines induces clustering of lysosomes, reminiscent of the partial co-localization of the EGFP-induced Rab26 clusters with lysosomes in neuronal cell bodies (Jin and Mills, 2014).

Does Rab26 direct synaptic vesicles towards the autophagy pathway?

Our results indicate that the core autophagy protein Atg16L1 is an effector of Rab26 that binds to the GTPase exclusively in the GTP-form, paralleling previous findings on the Golgi-resident Rab33B (Itoh et al., 2008). Interestingly, binding of Rab26 to Atg16L1 appears to be weaker than that between Rab33 and Atg16L1, which plays a role in canonical autophagy, probably explaining why Itoh et al. (2008) did not observe binding of GST-Rab26 to a full-length Atg16L1 protein using stringent conditions. It is conceivable that the interaction is more transient, or else, that it requires additional factors for stabilization, thus allowing for fine-tuning the flow of synaptic vesicles targeted for selective autophagy.

How does recruitment of Atg16L1 to synaptic vesicle clusters relate to the established steps of autophagosome formation? First of all, it cannot yet be excluded with certainty that upon recruitment to these vesicles Atg16L1 performs a non-canonical function that is not related to autophagosome formation (see e.g., [Pimentel-Muinos and Boada-Romero, 2014] for review of such functions). In particular, Atg16L1 and Rab33A have recently been found to be associated with secretory vesicles in neuroendocrine PC12 cells, with the data suggesting a role for Atg16L1 in regulating exocytosis independent of autophagy (Ishibashi et al., 2012). On the other hand, based on our extensive morphological assessment using double immunolabeling microscopy, we strongly favor that the Rab26-Atg16L1 complexes in neurons represent pre-autophagosomal structures because (i) Rab26 is not present on all synaptic vesicles but rather confined to vesicle aggregates that may be functionally impaired, and (ii) LC3 is recruited to these clusters suggesting that the formation of an autophagosomal membrane is, at least in part, initiated.

Our data indicates that the vesicle clusters containing Rab26 and Atg16L1 have undergone exo-endocytotic cycling. Intriguingly, clathrin has recently been shown to interact with Atg16L1, thus targeting plasma membrane constituents towards autophagosome precursors via clathrin-mediated endocytosis (Ravikumar et al., 2010). Since clathrin-mediated endocytosis constitutes the main endocytotic pathway for synaptic vesicles, it is conceivable that there is a synergy between Rab26- and clathrin-induced autophagocytosis in nerve terminals that further fine-tunes the targeting of synaptic vesicles to preautophagosomal structures.

Taken together, the data support the view that Rab26 is member of a signaling cascade that selectively targets synaptic and secretory vesicles towards autophagocytosis, which may represent a novel and highly specific form of autophagy (‘vesiculophagy’). In recent years, it has become apparent that in addition to the classical, mTOR/ULK kinase-induced pathway of macroautophagy there is a panoply of diverse and highly regulated pathways (e.g., pexophagy and mitophagy) that all converge on the common pathway but differ in the mechanism of initiation and cargo recruitment. In many of these cases the pathway is initiated by ubiquitination of target proteins. While we do not know whether this is also the case here, it is conceivable that the initiation event may indeed be the recruitment of active Rab26 to the membrane of subsets of synaptic vesicles that then interacts with other factors to form clusters and to recruit an isolation membrane, the origin of which remains to be identified.

Implications for presynaptic function

Following the classical work in the early 70s of last century demonstrating that synaptic vesicles undergo multiple rounds of recycling in the synapse, (Atwood et al., 1972; Ceccarelli et al., 1973; Heuser and Reese, 1973), recent attention has focused primarily on unraveling the mechanisms of endocytosis and vesicle re-formation (Saheki and De Camilli, 2012). However, all membrane constituents age and accumulate structural defects requiring sorting out of damaged constituents. Although no increase in the number of late endosomes, lysosomes or autophagosomes was observed following even massive stimulation, it was hypothesized as early as 1971 that newly reformed synaptic vesicles could either be actively re-used as functional synaptic vesicles or re-directed to a pathway ultimately leading to lysosomes as the final destination for degradation (Holtzman et al., 1971). Our discovery of vesiculophagy as a pathway initiated in presynaptic boutons that directs entire synaptic vesicle pools towards autophagosomes provides a previously uncharacterized link towards lysosomal degradation of trafficking organelles which is distinct from the classical endosomal route. Indeed, recent data suggest that presynaptic neurotransmission is functionally modulated by macroautophagy. Induction of autophagy in neurons increased the amount of autophagic vacuoles in presynaptic terminals and with an accompanying reduction in synaptic vesicle number and decrease in evoked neurotransmitter release (Hernandez et al., 2012). Furthermore, two groups have recently suggested that in axons autophagosomes originate distally and then are transported by retrograde motors towards the cell body. During their travel they undergo fusion with acidic compartments and finally with the lysosomes (Lee et al., 2011; Maday et al., 2012). It is therefore conceivable that Rab26 feeds vesicle membranes into autophagosomes that may form and mature during retrograde transport. How this novel pathway is initiated and regulated will be the subject of future studies.

Material and methods


Mouse monoclonal and rabbit polyclonal antibodies specific for synaptophysin, synaptotagmin, synaptobrevin, Rab3a, GDI (Cl 81.2) and GFP were provided by Synaptic Systems (Göttingen, Germany). Mouse anti-LAMP2 antibody was purchased from the Developmental Studies Hybridoma Bank (DSHB, University of Iowa, IA). Antibodies against EEA1 and GM130 were purchased from BD Bioscience (Franklin Lakes, NJ). The antibody against the FLAG epitope was obtained from Stratagene (La Jolla, CA). Antibodies specific for Atg16L1 were purchased from CosmoBio (Tokyo) and MBL (Nagoya). Anti-Atg5 antibody was from Novus Biological (Littleton, Colorado). The antibody against secretogranin II was kindly provided by Sharon Tooze (Cancer Research UK). The monoclonal antibody against Rab26 used in this study was raised by immunizing 8- to 10-week-old female BALB/c mice over a period of 17 days with full length recombinant human Rab 26. Cells from knee lymph nodes were fused with the mouse myeloma cell line P3X63Ag.653 (ATCC CRL-1580). Cell culture supernatants obtained from individual clones were then screened using enzyme-linked immunosorbent assay (ELISA), immunoblot assays and immunoflourescence. The final hybridoma used in this study was cloned two times by limiting dilution. The monoclonal antibody produced from this clone was determined to be of the IgG2a subclass and is specific for Rab26 (Figure 1—figure supplement 1). The antibody is commercially available from Synaptic Systems (Göttingen, Germany). Cy3-labeled goat anti-mouse or anti-rabbit and Alexa 488-labeled goat anti-mouse secondary antibodies were purchased from Dianova (Hamburg, Germany) and used at a dilution of 1:400. Horseradish peroxidase-conjugated anti-mouse and anti-rabbit secondary antibodies were obtained from Bio-Rad (Hercules, CA) and used at a dilution of 1:2000 or 1:4000.


The coding sequence of human Rab26 (NM_014353.4) was amplified by PCR and inserted into pEGFP-C1 (Clontech, Palo Alto, CA) using BglII and BamHI restriction sites or into pCMV-Tag2a (Agilent Technologies, La Jolla, CA) using BamHI and XhoI restriction sites for expression in mammalian cells. Likewise, inserts encoding Rab26 Q123L, T77N or N177I mutants were generated by recombinant PCR and similarly inserted into these vectors. For recombinant protein expression in bacteria, inserts for the Rab26 variants were inserted into pGEX-KG using EcoRI and BamHI while the insert encoding alpha-GDI was sub-cloned into pET-28a (Novagen, Madison, WI). The sequence corresponding to murine Atg16L1(1–265) (BC049122) was cloned into pET-28a (Novagen) using NdeI and NotI restriction sites. Full-length murine Atg5(1–275) (BC002166) was cloned with an N-terminal thrombin cleavage site into the multiple cloning site 1 of pETDuet-1 (Novagen) using the SalI and NotI sites. The vector expressing neuropeptide Y (NPY) was generated by inserting the sequence encoding human pro-NPY into the pmRFP vector. Cloning was performed according to standard procedures (Janssen, 2001). The plasmid expressing GFP-tagged human LC3B was a kind gift from Dr Zvulun Elazar (Weizmann Institute, Israel).

Cell cultures, transfection and immunocytochemistry

Request a detailed protocol

Culturing of the HEK 293 and HeLa SS6 cell lines and the preparation of high density primary rat hippocampal neurons have been previously described (Rosenmund and Stevens, 1997; Chua et al., 2012). Neurons were transfected between 7 to 12 days after seeding or, in the case of the cell lines, 1 day after seeding using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according to the manufacturer's protocol. Neurons in Figures 3F, 4, Figure 3—figure supplement 1 and Figure 4—figure supplement 1 were transfected using calcium phosphate as previously described (Pavlos et al., 2010). Immunostaining was then performed as described in Chua et al. (2012). Briefly, cells were washed once with PBS to remove serum and then fixed using 4% paraformaldehyde. Afterwards, cells were permeabilized with 0.3% Triton-X-100 in PBS, rinsed with PBS and then blocked with 10% normal goat serum in PBS. Incubation with primary antibodies diluted in blocking solution was then carried out for 1 hr at room temperatures or overnight at 4°C. Subsequently, cells were exposed to secondary Cy3 or Alexafluor 488 conjugated goat anti-rabbit and anti-mouse antibodies, respectively, for 1 hr at room temperature. After washing, cells were mounted on slides (SuperFrost Plus, VWR International bvba, Leuven, Belgium) and then imaged using a confocal microscope (LSM 780, Zeiss, Germany) or an epifluorescence microscope (Axiovert 200M, Zeiss, Germany). Linescan analyses were performed using ImageJ or LAS AF Lite software.

Labeling of recycled synaptic vesicles

Request a detailed protocol

To visualize synaptic vesicles that have undergone recycling, live neurons transfected with EGFP-Rab26WT were incubated in culture for 24 hr with Oyster 550-labeled anti-synaptotagmin-I antibodies (Synaptic Systems) that recognize its luminal domain (Willig et al., 2006). The neurons were then washed twice with PBS, fixed with 4% paraformaldehyde and analyzed under the microscope.

Fly stocks and immunohistochemistry

Request a detailed protocol

The UAST-YFP.Rab26, UAST-YFP.Rab26Q250L, UAST-YFP.Rab26T204N (Zhang et al., 2007) and elav-Gal4 transgenic fly stocks were obtained from the Bloomington stock collection. Dissection and immunostaining of neuromuscular junctions from third instar larvae were performed as described (Schmid and Sigrist, 2008) using the following antibodies: mouse Anti-Brp (hybridoma clone nc82, DSHB; 1:50 dilution), anti-Csp antibody (hybridoma clone ab49, DSHB; 1:100 dilution), the chicken anti-GFP antibody (Abcam; 1:1000 dilution) and the goat anti-HRP (Sigma; 1:400 dilution). Dylight-649 labeled anti-goat and Alexa-488 labeled anti-chicken secondary antibodies were purchased from Jackson ImmunoResearch Laboratories (West Grove, PA). Alexa-568 conjugated anti-mouse secondary antibodies were purchased from Invitrogen (Carlsbad, CA). Images were acquired with a microscope (DMR-E; Leica, Germany) equipped with a scan head (TCS SP2 AOBS; Leica, Germany) and an oil-immersion 63 × 1.4 NA objective.

Subcellular fractionation

Request a detailed protocol

Biochemical isolation of synaptic vesicles from the rat brain was performed as described previously (Huttner et al., 1983; Takamori et al., 2006). 12 µg of each brain fraction were loaded for analysis by immunoblotting to monitor the protein enrichment profile.

Immunoisolation of synaptic vesicles

Request a detailed protocol

Purified monoclonal antibodies directed against Rab26 (described above) and synaptophysin (clone 7.2; [Jahn et al., 1985]) were coupled to epoxy-activated methacrylate microbeads (Eupergit C1Z, Röhm Pharmaceutical; note that these beads are no longer commercially available) and used for immunoisolation as described previously (Burger et al., 1989; Takamori et al., 2000). The bound vesicles were subsequently analyzed by electron microscopy or eluted with 40 µl 2 × SDS sample buffer for immunoblots analysis.

Membrane extraction of Rab proteins with purified GDI

Request a detailed protocol

The RabGDI assay was performed as described in Pavlos et al. (2010). Briefly, crude synaptic vesicles (LP2) were used as the starting material. 50 µg of LP2 were pre-incubated with 500 µM GDP or 500 µM GTPγS for 15 min at 37°C in 200 µl of extraction buffer containing 100 mM KCl, 5 mM MgCl2, 10 mM EDTA, 50 mM HEPES-KOH pH 7.4 supplemented with a protease inhibitor cocktail (cOmplete EDTA-free, Roche, Mannheim, Germany). 5 µM of purified His-GDI were then added to each sample and further incubated for 45 min at 37°C. The samples were then kept on ice and subsequently centrifuged for 20 min at 200,000×g, 4°C using a Beckman S100 AT3 rotor. The resulting pellet was re-suspended in 50 µl 2 × lithium dodecyl sulfate (LDS) sample buffer (Invitrogen), boiled at 95°C for 5 min and analyzed by immunoblotting.

Electron microscopy

Request a detailed protocol

For morphological analyses of immunoisolated vesicles, synaptophysin- or Rab26-conjugated microbeads containing the immunoisolated vesicles were first pelleted and subsequently immobilized using 2% agarose in 0.1 M cacodylate buffer at pH 7.4. Small agarose cubes containing the immobilized beads were fixed overnight at 4°C using 2% glutaraldehyde in 0.1 M cacodylate buffer at pH 7.4. After post-fixation in 1% osmium tetroxide and pre-embedding staining with 1% uranyl acetate, tissue samples were dehydrated and embedded in Agar 100. Thin sections (80 nm) were examined using a Philips CM 120 BioTwin transmission electron microscope (Philips Inc.Eindhoven, The Netherlands). Images were taken with a TemCam F224A slow scan CCD camera (TVIPS, Gauting, Germany). The evaluation of the samples was done using the iTEM software (Olympus Soft Imaging Solutions GmbH, Münster, Germany). For immunogold electron microscopy, ultrathin cryosections of neuronal cultures (Figure 5A and Figure 5—figure supplement 1) and HeLa cells (Figure 6—figure supplement 1) transfected with EGFP-Rab26WT, were prepared as described previously (Tokuyasu, 1973, 1980; Zink et al., 2009). For the ultrastructural analyses of the Drosophila neuromuscular junction (Figure 5D), a standard protocol was used. Briefly Drosophila filets were fixed by immersion using 2% glutaraldehyde in 0.1 M cacodylate buffer at pH 7.4 overnight at 4°C. After post-fixation in 1% osmium tetroxide and pre-embedding staining with 1% uranyl acetate, tissue samples were dehydrated and embedded in Agar 100. Thin sections (80 nm) were examined using a Philips CM 120 BioTwin transmission electron microscope (Philips Inc. Eindhoven, The Netherlands). Images were taken with a TemCam F416 slow scan CMOS camera (TVIPS, Gauting, Germany).

Protein expression and purification

Request a detailed protocol

Human GST-tagged Rab26WT, Q123L, T77N were expressed in Escherichia coli BL21 (D3). 200 ml of pre-culture were grown at 37°C overnight. 10 ml of the pre-culture were then inoculated into 1 l of fresh LB medium supplemented with 100 µg/ml ampicillin and incubated for 2.5 hr at 37°C until the OD600 reached a value of 0.6–0.8. The cultures were then incubated for 1 hr at 16°C. Induction was initiated by adding 1 mM IPTG to the cultures and the expression was carried out overnight at 16°C. Thereafter, cells were harvested by centrifugation at 4000 rpm for 10 min using a Beckman centrifuge. Pellets obtained from each 1 l culture flask were re-suspended in 25 ml of protein buffer containing 50 mM HEPES pH 7.4, 500 mM NaCl, 5 mM DTT, 5 mM MgCl2, 100 µM GTPγS/GDP, supplemented with protease inhibitor cocktail and 1 mg/l of DNase. The samples were left for 10–15 min at 4°C and subsequently sonicated four times for 30 s each, separated by a 1 min incubation on ice, using a Branson Sonifier 450. The lysate was then cleared at 13,000 rpm using a SLA 1500 rotor for 40 min at 4°C. The resulting supernatant was collected and filtered using a 0.45 µm Whatman filter. The filtrate was then loaded onto a GST-column (GST Trap4B GE Healthcare, Germany) and eluted using 30 mM glutathione in protein buffer. The eluted fractions were collected and dialyzed three times for 3 hr each using protein buffer to remove glutathione. The purified proteins were then used for GST pulldown assays.

His-tagged murine Atg16L1(1–265)-pET-28a and His-tagged murine Atg5-pETDuet-1 were co-transformed into E. coli Rosetta 2 cells (Merck Millipore, Germany). Proteins were co-expressed in 3 l of ZYM-5052 autoinducing medium (Studier, 2005) supplemented with 100 mg/l ampicillin and 30 mg/l kanamycin for 3 hr at 37°C and followed by an overnight incubation at 18°C. Cells were harvested by centrifugation at 4500×g for 20 min. Pellets were resuspended in 100 ml buffer A (0.3 M NaCl, 1 mM MgCl2, 35 mM imidazole, 50 mM NaH2PO4, pH 7.5). Cells were lysed by sonication and centrifuged for 1 hr at 25,000×g. The resulting supernatant was loaded onto two in line connected 1 ml HisTrap columns (GE Healthcare, Germany), washed with 80 ml buffer A and then eluted with a gradient from 0 to 100% over 80 ml of buffer B (0.3 M NaCl, 1 mM MgCl2, 0.5 M imidazole, 50 mM NaH2PO4, pH 7.5). Fractions containing the purified proteins were pooled and dialyzed overnight at 4°C in gel filtration buffer (0.2 M NaCl, 1 mM MgCl2, 25 mM HEPES, pH 7.5). The complex was concentrated and loaded onto a Superdex 200 16/60 column (GE Healthcare, Germany). Fractions were pooled and concentrated to 5 mg/ml, divided into aliquots, flash cooled in liquid nitrogen, and stored at −80°C.

Co-immunoprecipitation and pulldown assays

Request a detailed protocol

Co-immunoprecipitation assays were performed as described in Chua et al. (2012). Briefly, transiently transfected cells were washed once with ice-cold PBS and then lysed using lysis buffer (50 mM HEPES, 150 mM NaCl, 1 mM MgCl2, 1% Tx-100 supplemented with a protease inhibitor cocktail) for 30 min. The lysate was then clarified by centrifugation at 10,000×g for 10 min. The resulting supernatant was incubated for 2 hr with anti-Flag or anti-GFP antibodies. Subsequently, 30 µl of protein G-Sepharose beads (GE Healthcare, Sweden) were added to each sample and further incubated for 1 hr under constant rotation. The samples were then washed thrice with lysis buffer. Finally, 25–30 µl of 2 × LDS sample buffer were then added to the beads and the mixture was boiled at 95°C for 5 min. 15 µl of the immunoprecipitated samples and 5 µl of the input were analyzed by immunoblotting.

For GST pulldown assays, 10 µg of each purified GST-Rab26 variant were first immobilized to 15 µl of Glutathione Sepharose 4 Fast Flow beads (GE Healthcare, Sweden) in a buffer containing 200 mM NaCl, 5 mM DTT, 5 mM MgCl2, 10 µM GTPγS/GDP, 1% NP40, 50 mM HEPES, pH 7.4 for 30 min at 4°C with constant rotation. Subsequently, 10 µg of the pre-formed His-Atg16L1NT/His-Atg5FL complex was added to the mixture and further incubated for 1 more hr. The beads were then washed three times with buffer. 30 µl of 2 × LDS sample loading buffer was used to elute the proteins from the beads and 5 µl of each sample were subjected to SDS-PAGE and Western blotting.

Analyses of Rab and effector interaction by analytical gel filtration

Request a detailed protocol

Human Rab26(54–233)Q123L was cloned into pET-28a using NdeI and XhoI cleavage sites. Murine Rab33B(30–202)Q92L (BC065076) was cloned into pETDuet-1 with BamHI and NotI restriction sites. Plasmids were transformed into E. coli BL21(DE3). Bacteria were grown in 3 l ZYM-5052 autoinducing medium supplemented with the appropriate antibiotic for 8 hr at 37°C. Cells were harvested by centrifugation and resuspended in 100 ml buffer A (30 mM imidazole, 0.2 M NaCl, 5 mM MgCl2, 30 mM HEPES, pH 7.5). Bacteria were lysed with a microfluidizer and centrifuged for 1 hr at 25,000×g. Supernatant was loaded on a 1 ml HisTrap column (GE Healthcare, Germany) and washed with 25 ml buffer A and then eluted with a gradient from 0 to 100 % B over 20 ml (0.4 M imidazole, 0.2 M NaCl, 5 mM MgCl2, 30 mM HEPES, pH 7.5). Fractions containing protein were pooled and diluted 1:1 with gel filtration buffer (0.15 M NaCl, 5 mM MgCl2, 20 mM Hepes pH 7.5) and 250 µM GTP was added. Proteins were kept at 4°C overnight. Proteins were concentrated and loaded onto a Superdex 75 16/60 column (GE Healthcare, Germany). Fractions were then pooled and concentrated to at least 30 mg/ml, aliquoted and then flash cooled in liquid nitrogen and stored at −80°C.

For analytical gel filtration experiments 500 µl samples were loaded onto a Superdex 200 10/30 GL column (GE Healthcare, Germany) using an ÄktaPurifier (GE Healthcare, Germany). The gel filtration buffer was 0.15 M NaCl, 5 mM MgCl2, 20 mM HEPES, pH 7.5. 80 µM Rab26(54–233)Q123L, 8 µM Atg16NT/Atg5 and 1 mM GTP were mixed, incubated for 20 min at RT and then loaded to the column. For comparison, 80 µM Rab33B(30–202)Q92L was similarly mixed with 8 µM Atg16NT/Atg5 and 1 mM GTP and analyzed. As controls, 8 µM Atg16NT/Atg5 alone, 80 µM Rab26(54–233)Q123L containing 1 mM GTP or 80 µM Rab33B(30–202)Q92L with 1 mM GTP were ran separately. Samples were analyzed on Coomassie stained 15% SDS PAGE gels.


  1. 1
  2. 2
    Regulation of reversible binding of smg p25A, a ras p21-like GTP-binding protein, to synaptic plasma membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor
    1. S Araki
    2. A Kikuchi
    3. Y Hata
    4. M Isomura
    5. Y Takai
    The Journal of Biological Chemistry 265:13007–13015.
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20
  21. 21
  22. 22
  23. 23
  24. 24
  25. 25
  26. 26
  27. 27
  28. 28
  29. 29
  30. 30
  31. 31
  32. 32
  33. 33
    Molecular cloning: a laboratory manual
    1. KA Janssen
    Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press, volume 1–3.
  34. 34
  35. 35
  36. 36
  37. 37
  38. 38
  39. 39
    Guidelines for the use and interpretation of assays for monitoring autophagy
    1. DJ Klionsky
    2. FC Abdalla
    3. H Abeliovich
    4. RT Abraham
    5. A Acevedo-Arozena
    6. K Adeli
    7. L Agholme
    8. M Agnello
    9. P Agostinis
    10. JA Aguirre-Ghiso
    11. HJ Ahn
    12. O Ait-Mohamed
    13. S Ait-Si-Ali
    14. T Akematsu
    15. S Akira
    16. HM Al-Younes
    17. MA Al-Zeer
    18. ML Albert
    19. RL Albin
    20. J Alegre-Abarrategui
    21. MF Aleo
    22. M Alirezaei
    23. A Almasan
    24. M Almonte-Becerril
    25. A Amano
    26. R Amaravadi
    27. S Amarnath
    28. AO Amer
    29. N Andrieu-Abadie
    30. V Anantharam
    31. DK Ann
    32. S Anoopkumar-Dukie
    33. H Aoki
    34. N Apostolova
    35. G Arancia
    36. JP Aris
    37. K Asanuma
    38. NY Asare
    39. H Ashida
    40. V Askanas
    41. DS Askew
    42. P Auberger
    43. M Baba
    44. SK Backues
    45. EH Baehrecke
    46. BA Bahr
    47. XY Bai
    48. Y Bailly
    49. R Baiocchi
    50. G Baldini
    51. W Balduini
    52. A Ballabio
    53. BA Bamber
    54. ET Bampton
    55. G Bánhegyi
    56. CR Bartholomew
    57. DC Bassham
    58. RC Bast Jr
    59. H Batoko
    60. BH Bay
    61. I Beau
    62. DM Béchet
    63. TJ Begley
    64. C Behl
    65. C Behrends
    66. S Bekri
    67. B Bellaire
    68. LJ Bendall
    69. L Benetti
    70. L Berliocchi
    71. H Bernardi
    72. F Bernassola
    73. S Besteiro
    74. I Bhatia-Kissova
    75. X Bi
    76. M Biard-Piechaczyk
    77. JS Blum
    78. LH Boise
    79. P Bonaldo
    80. DL Boone
    81. BC Bornhauser
    82. KR Bortoluci
    83. I Bossis
    84. F Bost
    85. JP Bourquin
    86. P Boya
    87. M Boyer-Guittaut
    88. PV Bozhkov
    89. NR Brady
    90. C Brancolini
    91. A Brech
    92. JE Brenman
    93. A Brennand
    94. EH Bresnick
    95. P Brest
    96. D Bridges
    97. ML Bristol
    98. PS Brookes
    99. EJ Brown
    100. JH Brumell
    101. N Brunetti-Pierri
    102. UT Brunk
    103. DE Bulman
    104. SJ Bultman
    105. G Bultynck
    106. LF Burbulla
    107. W Bursch
    108. JP Butchar
    109. W Buzgariu
    110. SP Bydlowski
    111. K Cadwell
    112. M Cahová
    113. D Cai
    114. J Cai
    115. Q Cai
    116. B Calabretta
    117. J Calvo-Garrido
    118. N Camougrand
    119. M Campanella
    120. J Campos-Salinas
    121. E Candi
    122. L Cao
    123. AB Caplan
    124. SR Carding
    125. SM Cardoso
    126. JS Carew
    127. CR Carlin
    128. V Carmignac
    129. LA Carneiro
    130. S Carra
    131. RA Caruso
    132. G Casari
    133. C Casas
    134. R Castino
    135. E Cebollero
    136. F Cecconi
    137. J Celli
    138. H Chaachouay
    139. HJ Chae
    140. CY Chai
    141. DC Chan
    142. EY Chan
    143. RC Chang
    144. CM Che
    145. CC Chen
    146. GC Chen
    147. GQ Chen
    148. M Chen
    149. Q Chen
    150. SS Chen
    151. W Chen
    152. X Chen
    153. X Chen
    154. X Chen
    155. YG Chen
    156. Y Chen
    157. Y Chen
    158. YJ Chen
    159. Z Chen
    160. A Cheng
    161. CH Cheng
    162. Y Cheng
    163. H Cheong
    164. JH Cheong
    165. S Cherry
    166. R Chess-Williams
    167. ZH Cheung
    168. E Chevet
    169. HL Chiang
    170. R Chiarelli
    171. T Chiba
    172. LS Chin
    173. SH Chiou
    174. FV Chisari
    175. CH Cho
    176. DH Cho
    177. AM Choi
    178. D Choi
    179. KS Choi
    180. ME Choi
    181. S Chouaib
    182. D Choubey
    183. V Choubey
    184. CT Chu
    185. TH Chuang
    186. SH Chueh
    187. T Chun
    188. YJ Chwae
    189. ML Chye
    190. R Ciarcia
    191. MR Ciriolo
    192. MJ Clague
    193. RS Clark
    194. PG Clarke
    195. R Clarke
    196. P Codogno
    197. HA Coller
    198. MI Colombo
    199. S Comincini
    200. M Condello
    201. F Condorelli
    202. MR Cookson
    203. GH Coombs
    204. I Coppens
    205. R Corbalan
    206. P Cossart
    207. P Costelli
    208. S Costes
    209. A Coto-Montes
    210. E Couve
    211. FP Coxon
    212. JM Cregg
    213. JL Crespo
    214. MJ Cronjé
    215. AM Cuervo
    216. JJ Cullen
    217. MJ Czaja
    218. M D'Amelio
    219. A Darfeuille-Michaud
    220. LM Davids
    221. FE Davies
    222. M De Felici
    223. JF de Groot
    224. CA de Haan
    225. L De Martino
    226. A De Milito
    227. V De Tata
    228. J Debnath
    229. A Degterev
    230. B Dehay
    231. LM Delbridge
    232. F Demarchi
    233. YZ Deng
    234. J Dengjel
    235. P Dent
    236. D Denton
    237. V Deretic
    238. SD Desai
    239. RJ Devenish
    240. M Di Gioacchino
    241. G Di Paolo
    242. C Di Pietro
    243. G Díaz-Araya
    244. I Díaz-Laviada
    245. MT Diaz-Meco
    246. J Diaz-Nido
    247. I Dikic
    248. SP Dinesh-Kumar
    249. WX Ding
    250. CW Distelhorst
    251. A Diwan
    252. M Djavaheri-Mergny
    253. S Dokudovskaya
    254. Z Dong
    255. FC Dorsey
    256. V Dosenko
    257. JJ Dowling
    258. S Doxsey
    259. M Dreux
    260. ME Drew
    261. Q Duan
    262. MA Duchosal
    263. K Duff
    264. I Dugail
    265. M Durbeej
    266. M Duszenko
    267. CL Edelstein
    268. AL Edinger
    269. G Egea
    270. L Eichinger
    271. NT Eissa
    272. S Ekmekcioglu
    273. WS El-Deiry
    274. Z Elazar
    275. M Elgendy
    276. LM Ellerby
    277. KE Eng
    278. AM Engelbrecht
    279. S Engelender
    280. J Erenpreisa
    281. R Escalante
    282. A Esclatine
    283. EL Eskelinen
    284. L Espert
    285. V Espina
    286. H Fan
    287. J Fan
    288. QW Fan
    289. Z Fan
    290. S Fang
    291. Y Fang
    292. M Fanto
    293. A Fanzani
    294. T Farkas
    295. JC Farré
    296. M Faure
    297. M Fechheimer
    298. CG Feng
    299. J Feng
    300. Q Feng
    301. Y Feng
    302. L Fésüs
    303. R Feuer
    304. ME Figueiredo-Pereira
    305. GM Fimia
    306. DC Fingar
    307. S Finkbeiner
    308. T Finkel
    309. KD Finley
    310. F Fiorito
    311. EA Fisher
    312. PB Fisher
    313. M Flajolet
    314. ML Florez-McClure
    315. S Florio
    316. EA Fon
    317. F Fornai
    318. F Fortunato
    319. R Fotedar
    320. DH Fowler
    321. HS Fox
    322. R Franco
    323. LB Frankel
    324. M Fransen
    325. JM Fuentes
    326. J Fueyo
    327. J Fujii
    328. K Fujisaki
    329. E Fujita
    330. M Fukuda
    331. RH Furukawa
    332. M Gaestel
    333. P Gailly
    334. M Gajewska
    335. B Galliot
    336. V Galy
    337. S Ganesh
    338. B Ganetzky
    339. IG Ganley
    340. FB Gao
    341. GF Gao
    342. J Gao
    343. L Garcia
    344. G Garcia-Manero
    345. M Garcia-Marcos
    346. M Garmyn
    347. AL Gartel
    348. E Gatti
    349. M Gautel
    350. TR Gawriluk
    351. ME Gegg
    352. J Geng
    353. M Germain
    354. JE Gestwicki
    355. DA Gewirtz
    356. S Ghavami
    357. P Ghosh
    358. AM Giammarioli
    359. AN Giatromanolaki
    360. SB Gibson
    361. RW Gilkerson
    362. ML Ginger
    363. HN Ginsberg
    364. J Golab
    365. MS Goligorsky
    366. P Golstein
    367. C Gomez-Manzano
    368. E Goncu
    369. C Gongora
    370. CD Gonzalez
    371. R Gonzalez
    372. C González-Estévez
    373. RA González-Polo
    374. E Gonzalez-Rey
    375. NV Gorbunov
    376. S Gorski
    377. S Goruppi
    378. RA Gottlieb
    379. D Gozuacik
    380. GE Granato
    381. GD Grant
    382. KN Green
    383. A Gregorc
    384. F Gros
    385. C Grose
    386. TW Grunt
    387. P Gual
    388. JL Guan
    389. KL Guan
    390. SM Guichard
    391. AS Gukovskaya
    392. I Gukovsky
    393. J Gunst
    394. AB Gustafsson
    395. AJ Halayko
    396. AN Hale
    397. SK Halonen
    398. M Hamasaki
    399. F Han
    400. T Han
    401. MK Hancock
    402. M Hansen
    403. H Harada
    404. M Harada
    405. SE Hardt
    406. JW Harper
    407. AL Harris
    408. J Harris
    409. SD Harris
    410. M Hashimoto
    411. JA Haspel
    412. S Hayashi
    413. LA Hazelhurst
    414. C He
    415. YW He
    416. MJ Hébert
    417. KA Heidenreich
    418. MH Helfrich
    419. GV Helgason
    420. EP Henske
    421. B Herman
    422. PK Herman
    423. C Hetz
    424. S Hilfiker
    425. JA Hill
    426. LJ Hocking
    427. P Hofman
    428. TG Hofmann
    429. J Höhfeld
    430. TL Holyoake
    431. MH Hong
    432. DA Hood
    433. GS Hotamisligil
    434. EJ Houwerzijl
    435. M Høyer-Hansen
    436. B Hu
    437. CA Hu
    438. HM Hu
    439. Y Hua
    440. C Huang
    441. J Huang
    442. S Huang
    443. WP Huang
    444. TB Huber
    445. WK Huh
    446. TH Hung
    447. TR Hupp
    448. GM Hur
    449. JB Hurley
    450. SN Hussain
    451. PJ Hussey
    452. JJ Hwang
    453. S Hwang
    454. A Ichihara
    455. S Ilkhanizadeh
    456. K Inoki
    457. T Into
    458. V Iovane
    459. JL Iovanna
    460. NY Ip
    461. Y Isaka
    462. H Ishida
    463. C Isidoro
    464. K Isobe
    465. A Iwasaki
    466. M Izquierdo
    467. Y Izumi
    468. PM Jaakkola
    469. M Jäättelä
    470. GR Jackson
    471. WT Jackson
    472. B Janji
    473. M Jendrach
    474. JH Jeon
    475. EB Jeung
    476. H Jiang
    477. H Jiang
    478. JX Jiang
    479. M Jiang
    480. Q Jiang
    481. X Jiang
    482. X Jiang
    483. A Jiménez
    484. M Jin
    485. S Jin
    486. CO Joe
    487. T Johansen
    488. DE Johnson
    489. GV Johnson
    490. NL Jones
    491. B Joseph
    492. SK Joseph
    493. AM Joubert
    494. G Juhász
    495. L Juillerat-Jeanneret
    496. CH Jung
    497. YK Jung
    498. K Kaarniranta
    499. A Kaasik
    500. T Kabuta
    501. M Kadowaki
    502. K Kagedal
    503. Y Kamada
    504. VO Kaminskyy
    505. HH Kampinga
    506. H Kanamori
    507. C Kang
    508. KB Kang
    509. KI Kang
    510. R Kang
    511. YA Kang
    512. T Kanki
    513. TD Kanneganti
    514. H Kanno
    515. AG Kanthasamy
    516. A Kanthasamy
    517. V Karantza
    518. GP Kaushal
    519. S Kaushik
    520. Y Kawazoe
    521. PY Ke
    522. JH Kehrl
    523. A Kelekar
    524. C Kerkhoff
    525. DH Kessel
    526. H Khalil
    527. JA Kiel
    528. AA Kiger
    529. A Kihara
    530. DR Kim
    531. DH Kim
    532. DH Kim
    533. EK Kim
    534. HR Kim
    535. JS Kim
    536. JH Kim
    537. JC Kim
    538. JK Kim
    539. PK Kim
    540. SW Kim
    541. YS Kim
    542. Y Kim
    543. A Kimchi
    544. AC Kimmelman
    545. JS King
    546. TJ Kinsella
    547. V Kirkin
    548. LA Kirshenbaum
    549. K Kitamoto
    550. K Kitazato
    551. L Klein
    552. WT Klimecki
    553. J Klucken
    554. E Knecht
    555. BC Ko
    556. JC Koch
    557. H Koga
    558. JY Koh
    559. YH Koh
    560. M Koike
    561. M Komatsu
    562. E Kominami
    563. HJ Kong
    564. WJ Kong
    565. VI Korolchuk
    566. Y Kotake
    567. MI Koukourakis
    568. JB Kouri Flores
    569. AL Kovács
    570. C Kraft
    571. D Krainc
    572. H Krämer
    573. C Kretz-Remy
    574. AM Krichevsky
    575. G Kroemer
    576. R Krüger
    577. O Krut
    578. NT Ktistakis
    579. CY Kuan
    580. R Kucharczyk
    581. A Kumar
    582. R Kumar
    583. S Kumar
    584. M Kundu
    585. HJ Kung
    586. T Kurz
    587. HJ Kwon
    588. AR La Spada
    589. F Lafont
    590. T Lamark
    591. J Landry
    592. JD Lane
    593. P Lapaquette
    594. JF Laporte
    595. L László
    596. S Lavandero
    597. JN Lavoie
    598. R Layfield
    599. PA Lazo
    600. W Le
    601. L Le Cam
    602. DJ Ledbetter
    603. AJ Lee
    604. BW Lee
    605. GM Lee
    606. J Lee
    607. JH Lee
    608. M Lee
    609. MS Lee
    610. SH Lee
    611. C Leeuwenburgh
    612. P Legembre
    613. R Legouis
    614. M Lehmann
    615. HY Lei
    616. QY Lei
    617. DA Leib
    618. J Leiro
    619. JJ Lemasters
    620. A Lemoine
    621. MS Lesniak
    622. D Lev
    623. VV Levenson
    624. B Levine
    625. E Levy
    626. F Li
    627. JL Li
    628. L Li
    629. S Li
    630. W Li
    631. XJ Li
    632. YB Li
    633. YP Li
    634. C Liang
    635. Q Liang
    636. YF Liao
    637. PP Liberski
    638. A Lieberman
    639. HJ Lim
    640. KL Lim
    641. K Lim
    642. CF Lin
    643. FC Lin
    644. J Lin
    645. JD Lin
    646. K Lin
    647. WW Lin
    648. WC Lin
    649. YL Lin
    650. R Linden
    651. P Lingor
    652. J Lippincott-Schwartz
    653. MP Lisanti
    654. PB Liton
    655. B Liu
    656. CF Liu
    657. K Liu
    658. L Liu
    659. QA Liu
    660. W Liu
    661. YC Liu
    662. Y Liu
    663. RA Lockshin
    664. CN Lok
    665. S Lonial
    666. B Loos
    667. G Lopez-Berestein
    668. C López-Otín
    669. L Lossi
    670. MT Lotze
    671. P Lőw
    672. B Lu
    673. B Lu
    674. B Lu
    675. Z Lu
    676. F Luciano
    677. NW Lukacs
    678. AH Lund
    679. MA Lynch-Day
    680. Y Ma
    681. F Macian
    682. JP MacKeigan
    683. KF Macleod
    684. F Madeo
    685. L Maiuri
    686. MC Maiuri
    687. D Malagoli
    688. MC Malicdan
    689. W Malorni
    690. N Man
    691. EM Mandelkow
    692. S Manon
    693. I Manov
    694. K Mao
    695. X Mao
    696. Z Mao
    697. P Marambaud
    698. D Marazziti
    699. YL Marcel
    700. K Marchbank
    701. P Marchetti
    702. SJ Marciniak
    703. M Marcondes
    704. M Mardi
    705. G Marfe
    706. G Mariño
    707. M Markaki
    708. MR Marten
    709. SJ Martin
    710. C Martinand-Mari
    711. W Martinet
    712. M Martinez-Vicente
    713. M Masini
    714. P Matarrese
    715. S Matsuo
    716. R Matteoni
    717. A Mayer
    718. NM Mazure
    719. DJ McConkey
    720. MJ McConnell
    721. C McDermott
    722. C McDonald
    723. GM McInerney
    724. SL McKenna
    725. B McLaughlin
    726. PJ McLean
    727. CR McMaster
    728. GA McQuibban
    729. AJ Meijer
    730. MH Meisler
    731. A Meléndez
    732. TJ Melia
    733. G Melino
    734. MA Mena
    735. JA Menendez
    736. RF Menna-Barreto
    737. MB Menon
    738. FM Menzies
    739. CA Mercer
    740. A Merighi
    741. DE Merry
    742. S Meschini
    743. CG Meyer
    744. TF Meyer
    745. CY Miao
    746. JY Miao
    747. PA Michels
    748. C Michiels
    749. D Mijaljica
    750. A Milojkovic
    751. S Minucci
    752. C Miracco
    753. CK Miranti
    754. I Mitroulis
    755. K Miyazawa
    756. N Mizushima
    757. B Mograbi
    758. S Mohseni
    759. X Molero
    760. B Mollereau
    761. F Mollinedo
    762. T Momoi
    763. I Monastyrska
    764. MM Monick
    765. MJ Monteiro
    766. MN Moore
    767. R Mora
    768. K Moreau
    769. PI Moreira
    770. Y Moriyasu
    771. J Moscat
    772. S Mostowy
    773. JC Mottram
    774. T Motyl
    775. CE Moussa
    776. S Müller
    777. S Muller
    778. K Münger
    779. C Münz
    780. LO Murphy
    781. ME Murphy
    782. A Musarò
    783. I Mysorekar
    784. E Nagata
    785. K Nagata
    786. A Nahimana
    787. U Nair
    788. T Nakagawa
    789. K Nakahira
    790. H Nakano
    791. H Nakatogawa
    792. M Nanjundan
    793. NI Naqvi
    794. DP Narendra
    795. M Narita
    796. M Navarro
    797. ST Nawrocki
    798. TY Nazarko
    799. A Nemchenko
    800. MG Netea
    801. TP Neufeld
    802. PA Ney
    803. IP Nezis
    804. HP Nguyen
    805. D Nie
    806. I Nishino
    807. C Nislow
    808. RA Nixon
    809. T Noda
    810. AA Noegel
    811. A Nogalska
    812. S Noguchi
    813. L Notterpek
    814. I Novak
    815. T Nozaki
    816. N Nukina
    817. T Nürnberger
    818. B Nyfeler
    819. K Obara
    820. TD Oberley
    821. S Oddo
    822. M Ogawa
    823. T Ohashi
    824. K Okamoto
    825. NL Oleinick
    826. FJ Oliver
    827. LJ Olsen
    828. S Olsson
    829. O Opota
    830. TF Osborne
    831. GK Ostrander
    832. K Otsu
    833. JH Ou
    834. M Ouimet
    835. M Overholtzer
    836. B Ozpolat
    837. P Paganetti
    838. U Pagnini
    839. N Pallet
    840. GE Palmer
    841. C Palumbo
    842. T Pan
    843. T Panaretakis
    844. UB Pandey
    845. Z Papackova
    846. I Papassideri
    847. I Paris
    848. J Park
    849. OK Park
    850. JB Parys
    851. KR Parzych
    852. S Patschan
    853. C Patterson
    854. S Pattingre
    855. JM Pawelek
    856. J Peng
    857. DH Perlmutter
    858. I Perrotta
    859. G Perry
    860. S Pervaiz
    861. M Peter
    862. GJ Peters
    863. M Petersen
    864. G Petrovski
    865. JM Phang
    866. M Piacentini
    867. P Pierre
    868. V Pierrefite-Carle
    869. G Pierron
    870. R Pinkas-Kramarski
    871. A Piras
    872. N Piri
    873. LC Platanias
    874. S Pöggeler
    875. M Poirot
    876. A Poletti
    877. C Poüs
    878. M Pozuelo-Rubio
    879. M Prætorius-Ibba
    880. A Prasad
    881. M Prescott
    882. M Priault
    883. N Produit-Zengaffinen
    884. A Progulske-Fox
    885. T Proikas-Cezanne
    886. S Przedborski
    887. K Przyklenk
    888. R Puertollano
    889. J Puyal
    890. SB Qian
    891. L Qin
    892. ZH Qin
    893. SE Quaggin
    894. N Raben
    895. H Rabinowich
    896. SW Rabkin
    897. I Rahman
    898. A Rami
    899. G Ramm
    900. G Randall
    901. F Randow
    902. VA Rao
    903. JC Rathmell
    904. B Ravikumar
    905. SK Ray
    906. BH Reed
    907. JC Reed
    908. F Reggiori
    909. A Régnier-Vigouroux
    910. AS Reichert
    911. JJ Reiners Jr
    912. RJ Reiter
    913. J Ren
    914. JL Revuelta
    915. CJ Rhodes
    916. K Ritis
    917. E Rizzo
    918. J Robbins
    919. M Roberge
    920. H Roca
    921. MC Roccheri
    922. S Rocchi
    923. HP Rodemann
    924. S Rodríguez de Córdoba
    925. B Rohrer
    926. IB Roninson
    927. K Rosen
    928. MM Rost-Roszkowska
    929. M Rouis
    930. KM Rouschop
    931. F Rovetta
    932. BP Rubin
    933. DC Rubinsztein
    934. K Ruckdeschel
    935. EB Rucker III
    936. A Rudich
    937. E Rudolf
    938. N Ruiz-Opazo
    939. R Russo
    940. TE Rusten
    941. KM Ryan
    942. SW Ryter
    943. DM Sabatini
    944. J Sadoshima
    945. T Saha
    946. T Saitoh
    947. H Sakagami
    948. Y Sakai
    949. GH Salekdeh
    950. P Salomoni
    951. PM Salvaterra
    952. G Salvesen
    953. R Salvioli
    954. AM Sanchez
    955. JA Sánchez-Alcázar
    956. R Sánchez-Prieto
    957. M Sandri
    958. U Sankar
    959. P Sansanwal
    960. L Santambrogio
    961. S Saran
    962. S Sarkar
    963. M Sarwal
    964. C Sasakawa
    965. A Sasnauskiene
    966. M Sass
    967. K Sato
    968. M Sato
    969. AH Schapira
    970. M Scharl
    971. HM Schätzl
    972. W Scheper
    973. S Schiaffino
    974. C Schneider
    975. ME Schneider
    976. R Schneider-Stock
    977. PV Schoenlein
    978. DF Schorderet
    979. C Schüller
    980. GK Schwartz
    981. L Scorrano
    982. L Sealy
    983. PO Seglen
    984. J Segura-Aguilar
    985. I Seiliez
    986. O Seleverstov
    987. C Sell
    988. JB Seo
    989. D Separovic
    990. V Setaluri
    991. T Setoguchi
    992. C Settembre
    993. JJ Shacka
    994. M Shanmugam
    995. IM Shapiro
    996. E Shaulian
    997. RJ Shaw
    998. JH Shelhamer
    999. HM Shen
    1000. WC Shen
    1001. ZH Sheng
    1002. Y Shi
    1003. K Shibuya
    1004. Y Shidoji
    1005. JJ Shieh
    1006. CM Shih
    1007. Y Shimada
    1008. S Shimizu
    1009. T Shintani
    1010. OS Shirihai
    1011. GC Shore
    1012. AA Sibirny
    1013. SB Sidhu
    1014. B Sikorska
    1015. EC Silva-Zacarin
    1016. A Simmons
    1017. AK Simon
    1018. HU Simon
    1019. C Simone
    1020. A Simonsen
    1021. DA Sinclair
    1022. R Singh
    1023. D Sinha
    1024. FA Sinicrope
    1025. A Sirko
    1026. PM Siu
    1027. E Sivridis
    1028. V Skop
    1029. VP Skulachev
    1030. RS Slack
    1031. SS Smaili
    1032. DR Smith
    1033. MS Soengas
    1034. T Soldati
    1035. X Song
    1036. AK Sood
    1037. TW Soong
    1038. F Sotgia
    1039. SA Spector
    1040. CD Spies
    1041. W Springer
    1042. SM Srinivasula
    1043. L Stefanis
    1044. JS Steffan
    1045. R Stendel
    1046. H Stenmark
    1047. A Stephanou
    1048. ST Stern
    1049. C Sternberg
    1050. B Stork
    1051. P Strålfors
    1052. CS Subauste
    1053. X Sui
    1054. D Sulzer
    1055. J Sun
    1056. SY Sun
    1057. ZJ Sun
    1058. JJ Sung
    1059. K Suzuki
    1060. T Suzuki
    1061. MS Swanson
    1062. C Swanton
    1063. ST Sweeney
    1064. LK Sy
    1065. G Szabadkai
    1066. I Tabas
    1067. H Taegtmeyer
    1068. M Tafani
    1069. K Takács-Vellai
    1070. Y Takano
    1071. K Takegawa
    1072. G Takemura
    1073. F Takeshita
    1074. NJ Talbot
    1075. KS Tan
    1076. K Tanaka
    1077. K Tanaka
    1078. D Tang
    1079. D Tang
    1080. I Tanida
    1081. BA Tannous
    1082. N Tavernarakis
    1083. GS Taylor
    1084. GA Taylor
    1085. JP Taylor
    1086. LS Terada
    1087. A Terman
    1088. G Tettamanti
    1089. K Thevissen
    1090. CB Thompson
    1091. A Thorburn
    1092. M Thumm
    1093. F Tian
    1094. Y Tian
    1095. G Tocchini-Valentini
    1096. AM Tolkovsky
    1097. Y Tomino
    1098. L Tönges
    1099. SA Tooze
    1100. C Tournier
    1101. J Tower
    1102. R Towns
    1103. V Trajkovic
    1104. LH Travassos
    1105. TF Tsai
    1106. MP Tschan
    1107. T Tsubata
    1108. A Tsung
    1109. B Turk
    1110. LS Turner
    1111. SC Tyagi
    1112. Y Uchiyama
    1113. T Ueno
    1114. M Umekawa
    1115. R Umemiya-Shirafuji
    1116. VK Unni
    1117. MI Vaccaro
    1118. EM Valente
    1119. G Van den Berghe
    1120. IJ van der Klei
    1121. W van Doorn
    1122. LF van Dyk
    1123. M van Egmond
    1124. LA van Grunsven
    1125. P Vandenabeele
    1126. WP Vandenberghe
    1127. I Vanhorebeek
    1128. EC Vaquero
    1129. G Velasco
    1130. T Vellai
    1131. JM Vicencio
    1132. RD Vierstra
    1133. M Vila
    1134. C Vindis
    1135. G Viola
    1136. MT Viscomi
    1137. OV Voitsekhovskaja
    1138. C von Haefen
    1139. M Votruba
    1140. K Wada
    1141. R Wade-Martins
    1142. CL Walker
    1143. CM Walsh
    1144. J Walter
    1145. XB Wan
    1146. A Wang
    1147. C Wang
    1148. D Wang
    1149. F Wang
    1150. F Wang
    1151. G Wang
    1152. H Wang
    1153. HG Wang
    1154. HD Wang
    1155. J Wang
    1156. K Wang
    1157. M Wang
    1158. RC Wang
    1159. X Wang
    1160. X Wang
    1161. YJ Wang
    1162. Y Wang
    1163. Z Wang
    1164. ZC Wang
    1165. Z Wang
    1166. DG Wansink
    1167. DM Ward
    1168. H Watada
    1169. SL Waters
    1170. P Webster
    1171. L Wei
    1172. CC Weihl
    1173. WA Weiss
    1174. SM Welford
    1175. LP Wen
    1176. CA Whitehouse
    1177. JL Whitton
    1178. AJ Whitworth
    1179. T Wileman
    1180. JW Wiley
    1181. S Wilkinson
    1182. D Willbold
    1183. RL Williams
    1184. PR Williamson
    1185. BG Wouters
    1186. C Wu
    1187. DC Wu
    1188. WK Wu
    1189. A Wyttenbach
    1190. RJ Xavier
    1191. Z Xi
    1192. P Xia
    1193. G Xiao
    1194. Z Xie
    1195. Z Xie
    1196. DZ Xu
    1197. J Xu
    1198. L Xu
    1199. X Xu
    1200. A Yamamoto
    1201. A Yamamoto
    1202. S Yamashina
    1203. M Yamashita
    1204. X Yan
    1205. M Yanagida
    1206. DS Yang
    1207. E Yang
    1208. JM Yang
    1209. SY Yang
    1210. W Yang
    1211. WY Yang
    1212. Z Yang
    1213. MC Yao
    1214. TP Yao
    1215. B Yeganeh
    1216. WL Yen
    1217. JJ Yin
    1218. XM Yin
    1219. OJ Yoo
    1220. G Yoon
    1221. SY Yoon
    1222. T Yorimitsu
    1223. Y Yoshikawa
    1224. T Yoshimori
    1225. K Yoshimoto
    1226. HJ You
    1227. RJ Youle
    1228. A Younes
    1229. L Yu
    1230. L Yu
    1231. SW Yu
    1232. WH Yu
    1233. ZM Yuan
    1234. Z Yue
    1235. CH Yun
    1236. M Yuzaki
    1237. O Zabirnyk
    1238. E Silva-Zacarin
    1239. D Zacks
    1240. E Zacksenhaus
    1241. N Zaffaroni
    1242. Z Zakeri
    1243. HJ Zeh III
    1244. SO Zeitlin
    1245. H Zhang
    1246. HL Zhang
    1247. J Zhang
    1248. JP Zhang
    1249. L Zhang
    1250. L Zhang
    1251. MY Zhang
    1252. XD Zhang
    1253. M Zhao
    1254. YF Zhao
    1255. Y Zhao
    1256. ZJ Zhao
    1257. X Zheng
    1258. B Zhivotovsky
    1259. Q Zhong
    1260. CZ Zhou
    1261. C Zhu
    1262. WG Zhu
    1263. XF Zhu
    1264. X Zhu
    1265. Y Zhu
    1266. T Zoladek
    1267. WX Zong
    1268. A Zorzano
    1269. J Zschocke
    1270. B Zuckerbraun
    Autophagy 8:445–544.
  40. 40
  41. 41
    Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin
    1. K Kraszewski
    2. O Mundigl
    3. L Daniell
    4. C Verderio
    5. M Matteoli
    6. P De Camilli
    The Journal of Neuroscience 15:4328–4342.
  42. 42
  43. 43
  44. 44
  45. 45
  46. 46
  47. 47
  48. 48
  49. 49
  50. 50
  51. 51
  52. 52
  53. 53
  54. 54
  55. 55
  56. 56
  57. 57
    Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs
    1. GN Patrick
    2. B Bingol
    3. HA Weld
    4. EM Schuman
    Current Biology 13:2073–2081.
  58. 58
  59. 59
  60. 60
  61. 61
  62. 62
  63. 63
  64. 64
  65. 65
  66. 66
  67. 67
  68. 68
  69. 69
  70. 70
  71. 71
  72. 72
    Preferential localization of polyribosomes under the base of dendritic spines in granule cells of the dentate gyrus
    1. O Steward
    2. WB Levy
    The Journal of Neuroscience 2:284–291.
  73. 73
  74. 74
  75. 75
    Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles
    1. S Takamori
    2. D Riedel
    3. R Jahn
    The Journal of Neuroscience 20:4904–4911.
  76. 76
  77. 77
  78. 78
  79. 79
    Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins
    1. O Ullrich
    2. H Stenmark
    3. K Alexandrov
    4. LA Huber
    5. K Kaibuchi
    6. T Sasaki
    7. Y Takai
    8. M Zerial
    The Journal of Biological Chemistry 268:18143–18150.
  80. 80
  81. 81
  82. 82
  83. 83
  84. 84
  85. 85
  86. 86
  87. 87
  88. 88
  89. 89

Decision letter

  1. Christian Rosenmund
    Reviewing Editor; Charité-Universitätsmedizin Berlin, Germany

eLife posts the editorial decision letter and author response on a selection of the published articles (subject to the approval of the authors). An edited version of the letter sent to the authors after peer review is shown, indicating the substantive concerns or comments; minor concerns are not usually shown. Reviewers have the opportunity to discuss the decision before the letter is sent (see review process). Similarly, the author response typically shows only responses to the major concerns raised by the reviewers.

Thank you for sending your work entitled “Rab26 links synaptic vesicles to the autophagy pathway” for consideration at eLife. Your article has been favorably evaluated by Eve Marder (Senior editor) and 2 reviewers, one of whom is a member of our Board of Reviewing Editors.

The Reviewing editor and the other reviewer discussed their comments before we reached this decision, and the Reviewing editor has assembled the following comments to help you prepare a revised submission.

All reviewers were generally enthusiastic about your work. They felt that the data presented are of very high quality and generally support your conclusions, especially with regard to the SV association of Rab26. They also see strong potential in this work to represent a novel secretory vesicle degeneration pathway. However, the link to autophagy was considered still rather tenuous. While the massive somatic vesicle clustering and colocalization with Atg16L and LC3 may argue for a pre-autophagic event, the proof for a critical role of Rab26 for autophagy in neurons would require necessity/sufficiency experiments such as the impact of Rab26 loss of function block on induction of autophagy. We leave it up to you either to tone down your claim (Title, Discussion, etc) or to provide further experimental data.

Minor comments:

1) It is surprising why EGFP-Rab26 is not LC3 positive: is this a question of weaker efficiency or eGFP-Rab26? Please comment.

2) What role does Rab26 expression levels play in the morphological phenotype?

3) Figure 5: which synaptobrevin was used for colocalization with EGFP-Rab26?


Author response

All reviewers were generally enthusiastic about your work. They felt that the data presented are of very high quality and generally support your conclusions, especially with regard to the SV association of Rab26. They also see strong potential in this work to represent a novel secretory vesicle degeneration pathway. However, the link to autophagy was considered still rather tenuous. While the massive somatic vesicle clustering and colocalization with Atg16L and LC3 may argue for a pre-autophagic event, the proof for a critical role of Rab26 for autophagy in neurons would require necessity/sufficiency experiments such as the impact of Rab26 loss of function block on induction of autophagy. We leave it up to you either to tone down your claim (Title, Discussion, etc) or to provide further experimental data.

We agree that we do not have conclusive evidence showing directly that Rab26 activation triggers autophagy of synaptic vesicles. The problem, as far as we see it, is that in situ this pathway is probably not active or of only very low activity, making loss-of-function experiments rather difficult. We have tried various approaches but it became clear that considerable additional efforts (including suitable animal models) are required for obtaining air-tight evidence, and it will probably be more efficient to carry out these experiments with a laboratory having the required tools and experiences.

We have therefore revised the Discussion as suggested in order to make sure we are not over-interpreting our results or draw conclusions that are not substantiated by the evidence. We have also revised the Abstract accordingly. As far as the Title is concerned, we could not come up with something better: “link”, at least by our understanding, means a connection (which we have shown) and does not imply necessity/sufficiency. Therefore, we have retained it except for a small change suggested by the eLife office, but we are open for a better suggestion.

Minor comments:

It is surprising why EGFP-Rab26 is not LC3 positive: is this a question of weaker efficiency or eGFP-Rab26? Please comment.

We were also puzzled by the observation that EGFP-Rab26, unlike FLAG-Rab26, does not readily localize with LC3. Possibly, the addition of the bulky EGFP-moiety (which is of similar size as the GTPase itself) interferes with the binding of additional factors needed for recruiting LC3 or for targeting vesicles to LC3 positive compartments, thereby trapping the vesicles at a step just prior to the recruitment of LC3. While uncommon, there are notable examples of the bulky GFP moiety interfering with protein-protein interactions and thus with function such as in the ESCRT pathway (Howard et al., 2001, J. Cell Sci., 114, 2395; Langelier et al., 2006, J. Virol. 80, 9465; Strack et al., 2003, Cell, 114, 689; Tandon et al., 2009, J. Virol., 83, 10797). Prevention of LC3-recruitment may therefore render the Rab26-induced vesicle clusters “stuck” as they cannot progress to form mature autophagosomes that are then degraded. Such a scenario would explain the accumulation of the enormous vesicle clusters observed within neuronal cell bodies that whilst retained Atg16L1, formed no or only incomplete isolation membranes. It may also account for the densely packed vesicle clusters lacking isolation membranes observed upon expression of EGFP-Rab26 in Drosophila neuromuscular synapses.

What role does Rab26 expression levels play in the morphological phenotype?

A higher level of Rab26 WT expression in cells (monitored by immunocytochemistry) does increase the phenotype. Nevertheless, even though Rab26 WT and Rab26 QL both express at similar levels in these cells (see e.g. Figure 2B), the WT variant still exhibits the stronger morphological phenotype. Consequently, the functional state of Rab26 (rather than its level alone) is the dominant factor influencing the magnitude of the phenotype.

Figure 5: which synaptobrevin was used for colocalization with EGFP-Rab26?

Antibodies specific for synaptobrevin 2 were used. This information has been added to the legend.


Article and author information

Author details

  1. Beyenech Binotti

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    BB, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article
    Contributed equally with
    Nathan J Pavlos
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7706-1096
  2. Nathan J Pavlos

    School of Surgery, University of Western Australia, Crawley, Australia
    NJP, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article
    Contributed equally with
    Beyenech Binotti
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7003-188X
  3. Dietmar Riedel

    Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    DR, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article
    Competing interests
    No competing interests declared.
  4. Dirk Wenzel

    Facility for Transmission Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    DW, Acquisition of data, Analysis and interpretation of data
    Competing interests
    No competing interests declared.
  5. Gerd Vorbrüggen

    1. Research Group Molecular Cell Dynamics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    2. Department of Developmental Biology, Georg-August-University Göttingen, Göttingen, Germany
    GV, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article
    Competing interests
    No competing interests declared.
  6. Amanda M Schalk

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Present address
    Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Ashland, United States
    AMS, Acquisition of data, Contributed unpublished essential data or reagents
    Competing interests
    No competing interests declared.
  7. Karin Kühnel

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    KK, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article
    Competing interests
    No competing interests declared.
  8. Janina Boyken

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Present address
    Gynecological Therapies, Bayer Pharma Aktiengesellschaft, Berlin, Germany
    JB, Acquisition of data, Analysis and interpretation of data
    Competing interests
    No competing interests declared.
  9. Christian Erck

    Synaptic Systems GmbH, Göttingen, Germany
    CE, Acquisition of data, Contributed unpublished essential data or reagents
    Competing interests
    No competing interests declared.
  10. Henrik Martens

    Synaptic Systems GmbH, Göttingen, Germany
    HM, Acquisition of data, Contributed unpublished essential data or reagents
    Competing interests
    No competing interests declared.
  11. John JE Chua

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    JJC, Conception and design, Analysis and interpretation of data, Drafting or revising the article
    For correspondence
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5615-1014
  12. Reinhard Jahn

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    RJ, Conception and design, Analysis and interpretation of data, Drafting or revising the article
    For correspondence
    Competing interests
    RJ: Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1542-3498


National Health and Medical Research Council (NHMRC) (463911 CJ Martin Fellowship)

  • Nathan J Pavlos

No formal funding was received for this work.


We thank Brigitte Barg-Kues and Sigrid Schmidt for excellent technical assistance.

Reviewing Editor

  1. Christian Rosenmund, Charité-Universitätsmedizin Berlin, Germany

Publication history

  1. Received: November 13, 2014
  2. Accepted: February 1, 2015
  3. Accepted Manuscript published: February 2, 2015 (version 1)
  4. Version of Record published: February 16, 2015 (version 2)


© 2015, Binotti et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 4,382
    Page views
  • 835
  • 70

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Daniela Saderi et al.
    Research Article Updated

    Both generalized arousal and engagement in a specific task influence sensory neural processing. To isolate effects of these state variables in the auditory system, we recorded single-unit activity from primary auditory cortex (A1) and inferior colliculus (IC) of ferrets during a tone detection task, while monitoring arousal via changes in pupil size. We used a generalized linear model to assess the influence of task engagement and pupil size on sound-evoked activity. In both areas, these two variables affected independent neural populations. Pupil size effects were more prominent in IC, while pupil and task engagement effects were equally likely in A1. Task engagement was correlated with larger pupil; thus, some apparent effects of task engagement should in fact be attributed to fluctuations in pupil size. These results indicate a hierarchy of auditory processing, where generalized arousal enhances activity in midbrain, and effects specific to task engagement become more prominent in cortex.

    1. Neuroscience
    Pratish Thakore et al.
    Research Article

    Cerebral blood flow is dynamically regulated by neurovascular coupling to meet the dynamic metabolic demands of the brain. We hypothesized that TRPA1 channels in capillary endothelial cells are stimulated by neuronal activity and instigate a propagating retrograde signal that dilates upstream parenchymal arterioles to initiate functional hyperemia. We find that activation of TRPA1 in capillary beds and post-arteriole transitional segments with mural cell coverage initiates retrograde signals that dilate upstream arterioles. These signals exhibit a unique mode of biphasic propagation. Slow, short-range intercellular Ca2+ signals in the capillary network are converted to rapid electrical signals in transitional segments that propagate to and dilate upstream arterioles. We further demonstrate that TRPA1 is necessary for functional hyperemia and neurovascular coupling within the somatosensory cortex of mice in vivo. These data establish endothelial cell TRPA1 channels as neuronal activity sensors that initiate microvascular vasodilatory responses to redirect blood to regions of metabolic demand.