Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus

Abstract

The intraparietal sulcus (IPS) is structurally and functionally heterogeneous. We performed a quantitative cyto- and receptor architectonical analysis to provide a multimodal map of the macaque IPS. We identified 17 cortical areas, including novel areas PEipe, PEipi (external and internal subdivisions of PEip), and MIPd. Multivariate analyses of receptor densities resulted in a grouping of areas based on the degree of (dis)similarity of their receptor architecture: a cluster encompassing areas located in the posterior portion of the IPS and associated mainly with the processing of visual information, a cluster including areas found in the anterior portion of the IPS and involved in sensorimotor processing, and an 'intermediate' cluster of multimodal association areas. Thus, differences in cyto- and receptor architecture segregate the cortical ribbon within the IPS, and receptor fingerprints provide novel insights into the relationship between the structural and functional segregation of this brain region in the macaque monkey.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Meiqi Niu

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7937-5814
  2. Daniele Impieri

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucija Rapan

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Funck

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicola Palomero-Gallagher

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    For correspondence
    n.palomero-gallagher@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4463-8578
  6. Karl Zilles

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Commission (785907)

  • Nicola Palomero-Gallagher
  • Karl Zilles

Bundesministerium für Bildung und Forschung (01GQ1902)

  • Nicola Palomero-Gallagher

European Commission (945539)

  • Nicola Palomero-Gallagher
  • Karl Zilles

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy E Behrens, University of Oxford, United Kingdom

Ethics

Animal experimentation: The present study did not include experimental procedures with live animals. Brains were obtained when animals were sacrificed to reduce the size of the colony, where they were maintained in accordance with the guidelines of the Directive 2010/63/eu of the European Parliament and of the Council on the protection of animals used for scientific purposes.

Version history

  1. Received: February 12, 2020
  2. Accepted: July 1, 2020
  3. Accepted Manuscript published: July 2, 2020 (version 1)
  4. Version of Record published: July 16, 2020 (version 2)
  5. Version of Record updated: June 18, 2021 (version 3)

Copyright

© 2020, Niu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,471
    views
  • 229
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meiqi Niu
  2. Daniele Impieri
  3. Lucija Rapan
  4. Thomas Funck
  5. Nicola Palomero-Gallagher
  6. Karl Zilles
(2020)
Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus
eLife 9:e55979.
https://doi.org/10.7554/eLife.55979

Share this article

https://doi.org/10.7554/eLife.55979

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.