Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus

Abstract

The intraparietal sulcus (IPS) is structurally and functionally heterogeneous. We performed a quantitative cyto- and receptor architectonical analysis to provide a multimodal map of the macaque IPS. We identified 17 cortical areas, including novel areas PEipe, PEipi (external and internal subdivisions of PEip), and MIPd. Multivariate analyses of receptor densities resulted in a grouping of areas based on the degree of (dis)similarity of their receptor architecture: a cluster encompassing areas located in the posterior portion of the IPS and associated mainly with the processing of visual information, a cluster including areas found in the anterior portion of the IPS and involved in sensorimotor processing, and an 'intermediate' cluster of multimodal association areas. Thus, differences in cyto- and receptor architecture segregate the cortical ribbon within the IPS, and receptor fingerprints provide novel insights into the relationship between the structural and functional segregation of this brain region in the macaque monkey.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Meiqi Niu

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7937-5814
  2. Daniele Impieri

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucija Rapan

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Funck

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicola Palomero-Gallagher

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    For correspondence
    n.palomero-gallagher@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4463-8578
  6. Karl Zilles

    Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Commission (785907)

  • Nicola Palomero-Gallagher
  • Karl Zilles

Bundesministerium für Bildung und Forschung (01GQ1902)

  • Nicola Palomero-Gallagher

European Commission (945539)

  • Nicola Palomero-Gallagher
  • Karl Zilles

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The present study did not include experimental procedures with live animals. Brains were obtained when animals were sacrificed to reduce the size of the colony, where they were maintained in accordance with the guidelines of the Directive 2010/63/eu of the European Parliament and of the Council on the protection of animals used for scientific purposes.

Copyright

© 2020, Niu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,589
    views
  • 252
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Meiqi Niu
  2. Daniele Impieri
  3. Lucija Rapan
  4. Thomas Funck
  5. Nicola Palomero-Gallagher
  6. Karl Zilles
(2020)
Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus
eLife 9:e55979.
https://doi.org/10.7554/eLife.55979

Share this article

https://doi.org/10.7554/eLife.55979

Further reading

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.

    1. Evolutionary Biology
    2. Neuroscience
    Gregor Belušič
    Insight

    The first complete 3D reconstruction of the compound eye of a minute wasp species sheds light on the nuts and bolts of size reduction.