Abstract

Cell migration is a dynamic process that entails extensive protein synthesis and recycling, structural remodeling, and considerable bioenergetic demand. Autophagy is one of the pathways that maintain cellular homeostasis. Time-lapse imaging of autophagosomes and ATP/ADP levels in migrating cells in the rostral migratory stream of mice revealed that decreases in ATP levels force cells into the stationary phase and induce autophagy. Pharmacological or genetic impairments of autophagy in neuroblasts using either bafilomycin, inducible conditional mice, or CRISPR/Cas9 gene editing decreased cell migration due to the longer duration of the stationary phase. Autophagy is modulated in response to migration-promoting and inhibiting molecular cues and is required for the recycling of focal adhesions. Our results show that autophagy and energy consumption act in concert in migrating cells to dynamically regulate the pace and periodicity of the migratory and stationary phases in order to sustain neuronal migration.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Cedric Bressan

    CERVO Brain Research Center, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Alessandra Pecora

    CERVO Brain Research Center, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Dave Gagnon

    Psychiatry and Neuroscience, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7366-0665
  4. Marina Snapyan

    CERVO Brain Research Center, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Simon Labrecque

    CERVO Brain Research Center, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul De Koninck

    Biochimie, Microbiologie & Bio-inormatique, Université Laval, Quebec, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6436-1062
  7. Martin Parent

    Psychiatry and neuroscience, Université Laval, Quebec City, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Armen Saghatelyan

    Psychiatry and Neuroscience, Université Laval, Quebec, Canada
    For correspondence
    armen.saghatelyan@fmed.ulaval.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4962-0465

Funding

Canadian Institutes of Health Research (PJT 153026)

  • Armen Saghatelyan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations of Canadian Council of Animal Care. All the experiments were approved by the Université Laval animal protection committee (#2014-178 and 2019-020).

Copyright

© 2020, Bressan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,988
    views
  • 349
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cedric Bressan
  2. Alessandra Pecora
  3. Dave Gagnon
  4. Marina Snapyan
  5. Simon Labrecque
  6. Paul De Koninck
  7. Martin Parent
  8. Armen Saghatelyan
(2020)
The dynamic interplay between ATP/ADP levels and autophagy sustain neuronal migration in vivo
eLife 9:e56006.
https://doi.org/10.7554/eLife.56006

Share this article

https://doi.org/10.7554/eLife.56006

Further reading

    1. Neuroscience
    Yisi Liu, Pu Wang ... Hongwei Zhou
    Short Report

    The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.

    1. Neuroscience
    Julieta Gomez-Frittelli, Gabrielle Frederique Devienne ... Julia A Kaltschmidt
    Research Article

    Intrinsic sensory neurons are an essential part of the enteric nervous system (ENS) and play a crucial role in gastrointestinal tract motility and digestion. Neuronal subtypes in the ENS have been distinguished by their electrophysiological properties, morphology, and expression of characteristic markers, notably neurotransmitters and neuropeptides. Here, we investigated synaptic cell adhesion molecules as novel cell-type markers in the ENS. Our work identifies two type II classic cadherins, Cdh6 and Cdh8, specific to sensory neurons in the mouse colon. We show that Cdh6+ neurons demonstrate all other distinguishing classifications of enteric sensory neurons including marker expression of Calcb and Nmu, Dogiel type II morphology and AH-type electrophysiology and IH current. Optogenetic activation of Cdh6+ sensory neurons in distal colon evokes retrograde colonic motor complexes (CMCs), while pharmacologic blockade of rhythmicity-associated current IH disrupts the spontaneous generation of CMCs. These findings provide the first demonstration of selective activation of a single neurochemical and functional class of enteric neurons and demonstrate a functional and critical role for sensory neurons in the generation of CMCs.