Intravital quantification reveals dynamic calcium concentration changes across B cell differentiation stages

  1. Carolin Ulbricht
  2. Ruth Leben
  3. Asylkhan Rakhymzhan
  4. Frank Kirchhoff
  5. Lars Nitschke
  6. Helena Radbruch
  7. Raluca A Niesner
  8. Anja E Hauser  Is a corresponding author
  1. Charité - Universitätsmedizin, Germany
  2. Deutsches Rheumaforschungszentrum (DRFZ), Germany
  3. University of Saarland, Germany
  4. Friedrich-Alexander-University Erlangen, Germany
  5. Charité-University of Medicine, Germany
  6. Charité - Universitätsmedizin and Deutsches Rheumaforschungszentrum, Germany

Abstract

Calcium is a universal second messenger present in all eukaryotic cells. The mobilization and storage of Ca2+ ions drives a number of signaling-related processes, stress-responses or metabolic changes, all of which are relevant for the development of immune cells and their adaption to pathogens. Here, we introduce the FRET-reporter mouse YellowCaB expressing the genetically encoded calcium indicator TN-XXL in B lymphocytes. Calcium-induced conformation change of TN-XXL results in FRET-donor quenching measurable by two-photon fluorescence lifetime imaging. For the first time, using our novel numerical analysis, we extract absolute cytoplasmic calcium concentrations in activated B cells during affinity maturation in vivo. We show that calcium in activated B cells is highly dynamic and that activation introduces a persistent calcium heterogeneity to the lineage. A characterization of absolute calcium concentrations present at any time within the cytosol is therefore of great value for the understanding of long-lived beneficial and detrimental (auto)immunity.

Data availability

Source data for flow cytometric Analysis, in vitro confocal imaging, ratiometric in vivo Imaging and fluorescence lifetime in vivo Imaging are deposited at Dryad Digital Repository 10.5061/dryad.cc2fqz63d. Analyzed absolute calcium concentration for all cells measured out of 5 experiments have also been deposited there. Source code for phasor based analysis of fluorescence lifetime data has been provided with full submission upload and will be made available to the public via github after publication.

The following data sets were generated

Article and author information

Author details

  1. Carolin Ulbricht

    Rheumatology and Clinical Immunology, Charité - Universitätsmedizin, Berlin, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2983-6242
  2. Ruth Leben

    Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
    Competing interests
    No competing interests declared.
  3. Asylkhan Rakhymzhan

    Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3152-1557
  4. Frank Kirchhoff

    Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
    Competing interests
    Frank Kirchhoff, Reviewing editor, eLife.
  5. Lars Nitschke

    Friedrich-Alexander-University Erlangen, Erlangen, Germany
    Competing interests
    No competing interests declared.
  6. Helena Radbruch

    Charité-University of Medicine, Berlin, Germany
    Competing interests
    No competing interests declared.
  7. Raluca A Niesner

    Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
    Competing interests
    No competing interests declared.
  8. Anja E Hauser

    Rheumatology and Clinical Immunology, Charité - Universitätsmedizin and Deutsches Rheumaforschungszentrum, Berlin, Germany
    For correspondence
    hauser@drfz.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7725-9526

Funding

Deutsche Forschungsgemeinschaft (TRR130 P17)

  • Helena Radbruch
  • Anja E Hauser

Deutsche Forschungsgemeinschaft (TRR130 C01)

  • Raluca A Niesner
  • Anja E Hauser

Deutsche Forschungsgemeinschaft (TRR130 P04)

  • Lars Nitschke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study was approved by the Berlin Landesamt für Gesundheit und Soziales under the registration # G00158/16. All surgeries and experimental procedures were conducted following the principle of minimization of suffering and 3R means were used where possible.

Copyright

© 2021, Ulbricht et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,750
    views
  • 249
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carolin Ulbricht
  2. Ruth Leben
  3. Asylkhan Rakhymzhan
  4. Frank Kirchhoff
  5. Lars Nitschke
  6. Helena Radbruch
  7. Raluca A Niesner
  8. Anja E Hauser
(2021)
Intravital quantification reveals dynamic calcium concentration changes across B cell differentiation stages
eLife 10:e56020.
https://doi.org/10.7554/eLife.56020

Share this article

https://doi.org/10.7554/eLife.56020

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Yuedan Wang, Ying Li ... Xuan Xiao
    Research Article

    Acute retinal ischemia and ischemia-reperfusion injury are the primary causes of retinal neural cell death and vision loss in retinal artery occlusion (RAO). The absence of an accurate mouse model for simulating the retinal ischemic process has hindered progress in developing neuroprotective agents for RAO. We developed a unilateral pterygopalatine ophthalmic artery occlusion (UPOAO) mouse model using silicone wire embolization combined with carotid artery ligation. The survival of retinal ganglion cells and visual function were evaluated to determine the duration of ischemia. Immunofluorescence staining, optical coherence tomography, and haematoxylin and eosin staining were utilized to assess changes in major neural cell classes and retinal structure degeneration at two reperfusion durations. Transcriptomics was employed to investigate alterations in the pathological process of UPOAO following ischemia and reperfusion, highlighting transcriptomic differences between UPOAO and other retinal ischemia-reperfusion models. The UPOAO model successfully replicated the acute interruption of retinal blood supply observed in RAO. 60 min of Ischemia led to significant loss of major retinal neural cells and visual function impairment. Notable thinning of the inner retinal layer, especially the ganglion cell layer, was evident post-UPOAO. Temporal transcriptome analysis revealed various pathophysiological processes related to immune cell migration, oxidative stress, and immune inflammation during the non-reperfusion and reperfusion periods. A pronounced increase in microglia within the retina and peripheral leukocytes accessing the retina was observed during reperfusion periods. Comparison of differentially expressed genes (DEGs) between the UPOAO and high intraocular pressure models revealed specific enrichments in lipid and steroid metabolism-related genes in the UPOAO model. The UPOAO model emerges as a novel tool for screening pathogenic genes and promoting further therapeutic research in RAO.

    1. Immunology and Inflammation
    Hyun-Chae Lee, Sun-Hee Park ... Kyoung Seob Song
    Research Article

    The gram-negative bacterium lipopolysaccharide (LPS) is frequently administered to generate models of systemic inflammation. However, there are several side effects and no effective treatment for LPS-induced systemic inflammation. PEGylated PDZ peptide based on zonula occludens-1 (ZO-1) was analyzed for its effects on systemic inflammation induced by LPS. PDZ peptide administration led to the restoration of tissue injuries (kidney, liver, and lung) and prevented alterations in biochemical plasma markers. The production of pro-inflammatory cytokines was significantly decreased in the plasma and lung BALF in the PDZ-administered mice. Flow cytometry analysis revealed the PDZ peptide significantly inhibited inflammation, mainly by decreasing the population of M1 macrophages, and neutrophils (immature and mature), and increasing M2 macrophages. Using RNA sequencing analysis, the expression levels of the NF-κB-related proteins were lower in PDZ-treated cells than in LPS-treated cells. In addition, wild-type PDZ peptide significantly increased mitochondrial membrane integrity and decreased LPS-induced mitochondria fission. Interestingly, PDZ peptide dramatically could reduce LPS-induced NF-κB signaling, ROS production, and the expression of M1 macrophage marker proteins, but increased the expression of M2 macrophage marker proteins. These results indicated that PEGylated PDZ peptide inhibits LPS-induced systemic inflammation, reducing tissue injuries and reestablishing homeostasis, and may be a therapeutic candidate against systemic inflammation.