1. Immunology and Inflammation
Download icon

Intravital quantification reveals dynamic calcium concentration changes across B cell differentiation stages

  1. Carolin Ulbricht
  2. Ruth Leben
  3. Asylkhan Rakhymzhan
  4. Frank Kirchhoff
  5. Lars Nitschke
  6. Helena Radbruch
  7. Raluca A Niesner
  8. Anja E Hauser  Is a corresponding author
  1. Charité - Universitätsmedizin, Germany
  2. Deutsches Rheumaforschungszentrum (DRFZ), Germany
  3. University of Saarland, Germany
  4. Friedrich-Alexander-University Erlangen, Germany
  5. Charité-University of Medicine, Germany
  6. Charité - Universitätsmedizin and Deutsches Rheumaforschungszentrum, Germany
Research Article
  • Cited 0
  • Views 297
  • Annotations
Cite this article as: eLife 2021;10:e56020 doi: 10.7554/eLife.56020

Abstract

Calcium is a universal second messenger present in all eukaryotic cells. The mobilization and storage of Ca2+ ions drives a number of signaling-related processes, stress-responses or metabolic changes, all of which are relevant for the development of immune cells and their adaption to pathogens. Here, we introduce the FRET-reporter mouse YellowCaB expressing the genetically encoded calcium indicator TN-XXL in B lymphocytes. Calcium-induced conformation change of TN-XXL results in FRET-donor quenching measurable by two-photon fluorescence lifetime imaging. For the first time, using our novel numerical analysis, we extract absolute cytoplasmic calcium concentrations in activated B cells during affinity maturation in vivo. We show that calcium in activated B cells is highly dynamic and that activation introduces a persistent calcium heterogeneity to the lineage. A characterization of absolute calcium concentrations present at any time within the cytosol is therefore of great value for the understanding of long-lived beneficial and detrimental (auto)immunity.

Data availability

Source data for flow cytometric Analysis, in vitro confocal imaging, ratiometric in vivo Imaging and fluorescence lifetime in vivo Imaging are deposited at Dryad Digital Repository 10.5061/dryad.cc2fqz63d. Analyzed absolute calcium concentration for all cells measured out of 5 experiments have also been deposited there. Source code for phasor based analysis of fluorescence lifetime data has been provided with full submission upload and will be made available to the public via github after publication.

The following data sets were generated

Article and author information

Author details

  1. Carolin Ulbricht

    Rheumatology and Clinical Immunology, Charité - Universitätsmedizin, Berlin, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2983-6242
  2. Ruth Leben

    Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
    Competing interests
    No competing interests declared.
  3. Asylkhan Rakhymzhan

    Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3152-1557
  4. Frank Kirchhoff

    Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg, Germany
    Competing interests
    Frank Kirchhoff, Reviewing editor, eLife.
  5. Lars Nitschke

    Friedrich-Alexander-University Erlangen, Erlangen, Germany
    Competing interests
    No competing interests declared.
  6. Helena Radbruch

    Charité-University of Medicine, Berlin, Germany
    Competing interests
    No competing interests declared.
  7. Raluca A Niesner

    Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
    Competing interests
    No competing interests declared.
  8. Anja E Hauser

    Rheumatology and Clinical Immunology, Charité - Universitätsmedizin and Deutsches Rheumaforschungszentrum, Berlin, Germany
    For correspondence
    hauser@drfz.de
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7725-9526

Funding

Deutsche Forschungsgemeinschaft (TRR130 P17)

  • Helena Radbruch
  • Anja E Hauser

Deutsche Forschungsgemeinschaft (TRR130 C01)

  • Raluca A Niesner
  • Anja E Hauser

Deutsche Forschungsgemeinschaft (TRR130 P04)

  • Lars Nitschke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The study was approved by the Berlin Landesamt für Gesundheit und Soziales under the registration # G00158/16. All surgeries and experimental procedures were conducted following the principle of minimization of suffering and 3R means were used where possible.

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Publication history

  1. Received: February 14, 2020
  2. Accepted: March 19, 2021
  3. Accepted Manuscript published: March 22, 2021 (version 1)

Copyright

© 2021, Ulbricht et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 297
    Page views
  • 72
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Philipp Kolb et al.
    Research Article Updated

    Human cytomegalovirus (HCMV) is endowed with multiple highly sophisticated immune evasion strategies. This includes the evasion from antibody mediated immune control by counteracting host Fc-gamma receptor (FcγR) mediated immune control mechanisms such as antibody-dependent cellular cytotoxicity (ADCC). We have previously shown that HCMV avoids FcγR activation by concomitant expression of the viral Fc-gamma-binding glycoproteins (vFcγRs) gp34 and gp68. We now show that gp34 and gp68 bind IgG simultaneously at topologically different Fcγ sites and achieve efficient antagonization of host FcγR activation by distinct but synergizing mechanisms. While gp34 enhances immune complex internalization, gp68 acts as inhibitor of host FcγR binding to immune complexes. In doing so, gp68 induces Fcγ accessibility to gp34 and simultaneously limits host FcγR recognition. The synergy of gp34 and gp68 is compelled by the interfering influence of excessive non-immune IgG ligands and highlights conformational changes within the IgG globular chains critical for antibody effector function.

    1. Cell Biology
    2. Immunology and Inflammation
    Shannon M Walsh et al.
    Tools and Resources

    The detection of foreign antigens in vivo has relied on fluorescent conjugation or indirect read-outs such as antigen presentation. In our studies, we found that these widely used techniques had several technical limitations that have precluded a complete picture of antigen trafficking or retention across lymph node cell types. To address these limitations, we developed a 'molecular tracking device' to follow the distribution, acquisition, and retention of antigen in the lymph node. Utilizing an antigen conjugated to a nuclease-resistant DNA tag, acting as a combined antigen-adjuvant conjugate, and single-cell mRNA sequencing we quantified antigen abundance in lymph node. Variable antigen levels enabled the identification of caveolar endocytosis as a mechanism of antigen acquisition or retention in lymphatic endothelial cells. Thus, these molecular tracking devices enable new approaches to study dynamic tissue dissemination of antigen-adjuvant conjugates and identify new mechanisms of antigen acquisition and retention at cellular resolution in vivo.