Centromere deletion in Cryptococcus deuterogattii leads to neocentromere formation and chromosome fusions
Abstract
The human fungal pathogen Cryptococcus deuterogattii is RNAi-deficient and lacks active transposons in its genome. C. deuterogattii has regional centromeres that contain only transposon relics. To investigate impact of centromere loss on the C. deuterogattii genome, either centromere 9 or 10 was deleted. Deletion of either centromere resulted in neocentromere formation and interestingly, the genes covered by these neocentromeres maintained wild-type expression levels. In contrast to cen9∆ mutants, cen10Δ mutant strains exhibited growth defects and were aneuploid for chromosome 10. At an elevated growth temperature (37°C), the cen10Δ chromosome was found to have undergone fusion with another native chromosome in some isolates and this fusion restored wild-type growth. Following chromosomal fusion, the neocentromere was inactivated, and the native centromere of the fused chromosome served as the active centromere. The neocentromere formation and chromosomal fusion events observed in this study in C. deuterogattii may be similar to events that triggered genomic changes within the Cryptococcus/Kwoniella species complex and may contribute to speciation throughout the eukaryotic domain.
Data availability
ChIP and whole-genome sequencing reads and de novo genome assemblies were deposited under NCBI BioProject Accession ID: PRJNA511460.
-
Neocentromere formation in Cryptococcus deuterogattiiNCBI BioProject, PRJNA511460.
Article and author information
Author details
Funding
NIH (AI050113-15)
- Joseph Heitman
NIH (AI039115-22)
- Joseph Heitman
CIFAR (Fungal Kingdom: Threats and Opportunities)
- Joseph Heitman
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Schotanus & Heitman
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,663
- views
-
- 164
- downloads
-
- 24
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 24
- citations for umbrella DOI https://doi.org/10.7554/eLife.56026