1. Chromosomes and Gene Expression
Download icon

Centromere deletion in Cryptococcus deuterogattii leads to neocentromere formation and chromosome fusions

  1. Klaas Schotanus
  2. Joseph Heitman  Is a corresponding author
  1. Duke University Medical Center, United States
Research Article
  • Cited 2
  • Views 960
  • Annotations
Cite this article as: eLife 2020;9:e56026 doi: 10.7554/eLife.56026


The human fungal pathogen Cryptococcus deuterogattii is RNAi-deficient and lacks active transposons in its genome. C. deuterogattii has regional centromeres that contain only transposon relics. To investigate impact of centromere loss on the C. deuterogattii genome, either centromere 9 or 10 was deleted. Deletion of either centromere resulted in neocentromere formation and interestingly, the genes covered by these neocentromeres maintained wild-type expression levels. In contrast to cen9∆ mutants, cen10Δ mutant strains exhibited growth defects and were aneuploid for chromosome 10. At an elevated growth temperature (37°C), the cen10Δ chromosome was found to have undergone fusion with another native chromosome in some isolates and this fusion restored wild-type growth. Following chromosomal fusion, the neocentromere was inactivated, and the native centromere of the fused chromosome served as the active centromere. The neocentromere formation and chromosomal fusion events observed in this study in C. deuterogattii may be similar to events that triggered genomic changes within the Cryptococcus/Kwoniella species complex and may contribute to speciation throughout the eukaryotic domain.

Article and author information

Author details

  1. Klaas Schotanus

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0974-2882
  2. Joseph Heitman

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6369-5995


NIH (AI050113-15)

  • Joseph Heitman

NIH (AI039115-22)

  • Joseph Heitman

CIFAR (Fungal Kingdom: Threats and Opportunities)

  • Joseph Heitman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wolf-Dietrich Heyer, University of California, Davis, United States

Publication history

  1. Received: February 14, 2020
  2. Accepted: April 16, 2020
  3. Accepted Manuscript published: April 20, 2020 (version 1)
  4. Version of Record published: April 28, 2020 (version 2)


© 2020, Schotanus & Heitman

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 960
    Page views
  • 115
  • 2

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Dingbang Ma et al.
    Research Article

    Many different functions are regulated by circadian rhythms, including those orchestrated by discrete clock neurons within animal brains. To comprehensively characterize and assign cell identity to the 75 pairs of Drosophila circadian neurons, we optimized a single cell RNA sequencing method and assayed clock neuron gene expression at different times of day. The data identify at least 17 clock neuron categories with striking spatial regulation of gene expression. Transcription factor regulation is prominent and likely contributes to the robust circadian oscillation of many transcripts, including those that encode cell-surface proteins previously shown to be important for cell recognition and synapse formation during development. The many other clock-regulated genes also constitute an important resource for future mechanistic and functional studies between clock neurons and/or for temporal signaling to circuits elsewhere in the fly brain.

    1. Chromosomes and Gene Expression
    2. Physics of Living Systems
    Edward J Banigan, Leonid A Mirny
    Research Advance Updated

    Chromosome compaction is essential for reliable transmission of genetic information. Experiments suggest that ∼1000-fold compaction is driven by condensin complexes that extrude chromatin loops, by progressively collecting chromatin fiber from one or both sides of the complex to form a growing loop. Theory indicates that symmetric two-sided loop extrusion can achieve such compaction, but recent single-molecule studies (Golfier et al., 2020) observed diverse dynamics of condensins that perform one-sided, symmetric two-sided, and asymmetric two-sided extrusion. We use simulations and theory to determine how these molecular properties lead to chromosome compaction. High compaction can be achieved if even a small fraction of condensins have two essential properties: a long residence time and the ability to perform two-sided (not necessarily symmetric) extrusion. In mixtures of condensins I and II, coupling two-sided extrusion and stable chromatin binding by condensin II promotes compaction. These results provide missing connections between single-molecule observations and chromosome-scale organization.