PrkA controls peptidoglycan biosynthesis through the essential phosphorylation of ReoM

  1. Sabrina Wamp
  2. Zoe J Rutter
  3. Jeanine Rismondo
  4. Claire E Jennings
  5. Lars Möller
  6. Richard J Lewis
  7. Sven Halbedel  Is a corresponding author
  1. Robert Koch Institute, Germany
  2. Newcastle University, United Kingdom
  3. University of Göttingen, Germany
  4. Northern Institute for Cancer Research, United Kingdom

Abstract

Peptidoglycan (PG) is the main component of bacterial cell walls and the target for many antibiotics. PG biosynthesis is tightly coordinated with cell wall growth and turnover, and many of these control activities depend upon PASTA-domain containing eukaryotic-like serine/threonine protein kinases (PASTA-eSTK) that sense PG fragments. However, only a few PG biosynthetic enzymes are direct kinase substrates. Here, we identify the conserved ReoM protein as a novel PASTA-eSTK substrate in the Gram-positive pathogen Listeria monocytogenes. Our data show that the phosphorylation of ReoM is essential as it controls ClpCP-dependent proteolytic degradation of the essential enzyme MurA, which catalyses the first committed step in PG biosynthesis. We also identify ReoY as a second novel factor required for degradation of ClpCP substrates. Collectively, our data imply that the first committed step of PG biosynthesis is activated through control of ClpCP protease activity in response to signals of PG homeostasis imbalance.

Data availability

Genome sequences of shg8, shg10, shg12 and LMSW76 were deposited at ENA under study number PRJEB35110 and sample accession numbers ERS3927571 (SAMEA6127277), ERS3927572 (SAMEA6127278), ERS3927573 (SAMEA6127279), and ERS3967687 (SAMEA6167687) respectively.The co-ordinates and structure factors for the crystal structure of ReoM have been deposited at PDBe with accession code 6TIF.

The following data sets were generated

Article and author information

Author details

  1. Sabrina Wamp

    FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Zoe J Rutter

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeanine Rismondo

    Department of General Microbiology, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Claire E Jennings

    Newcastle Drug Discovery, Northern Institute for Cancer Research, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lars Möller

    ZBS 4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard J Lewis

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Sven Halbedel

    FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
    For correspondence
    halbedels@rki.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5575-8973

Funding

Deutsche Forschungsgemeinschaft (HA 6830/1-1)

  • Sven Halbedel

Deutsche Forschungsgemeinschaft (HA 6830/1-2)

  • Sven Halbedel

Fonds der chemischen Industrie (661460)

  • Sven Halbedel

Biotechnology and Biological Sciences Research Council (BB/M011186/1)

  • Richard J Lewis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Wamp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,412
    views
  • 303
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sabrina Wamp
  2. Zoe J Rutter
  3. Jeanine Rismondo
  4. Claire E Jennings
  5. Lars Möller
  6. Richard J Lewis
  7. Sven Halbedel
(2020)
PrkA controls peptidoglycan biosynthesis through the essential phosphorylation of ReoM
eLife 9:e56048.
https://doi.org/10.7554/eLife.56048

Share this article

https://doi.org/10.7554/eLife.56048

Further reading

    1. Microbiology and Infectious Disease
    Vivian C Salgueiro-Toledo, Jorge Bertol ... Rafael Prados-Rosales
    Research Article

    Pathogenic and nonpathogenic mycobacteria secrete extracellular vesicles (EVs) under various conditions. EVs produced by Mycobacterium tuberculosis (Mtb) have raised significant interest for their potential in cell communication, nutrient acquisition, and immune evasion. However, the relevance of vesicle secretion during tuberculosis infection remains unknown due to the limited understanding of mycobacterial vesicle biogenesis. We have previously shown that a transposon mutant in the LCP-related gene virR (virRmut) manifested a strong attenuated phenotype during experimental macrophage and murine infections, concomitant to enhanced vesicle release. In this study, we aimed to understand the role of VirR in the vesicle production process in Mtb. We employ genetic, transcriptional, proteomics, ultrastructural, and biochemical methods to investigate the underlying processes explaining the enhanced vesiculogenesis phenomenon observed in the virRmut. Our results establish that VirR is critical to sustain proper cell permeability via regulation of cell envelope remodeling possibly through the interaction with similar cell envelope proteins, which control the link between peptidoglycan and arabinogalactan. These findings advance our understanding of mycobacterial extracellular vesicle biogenesis and suggest that these set of proteins could be attractive targets for therapeutic intervention.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.