1. Microbiology and Infectious Disease
Download icon

PrkA controls peptidoglycan biosynthesis through the essential phosphorylation of ReoM

  1. Sabrina Wamp
  2. Zoe J Rutter
  3. Jeanine Rismondo
  4. Claire E Jennings
  5. Lars Möller
  6. Richard J Lewis
  7. Sven Halbedel  Is a corresponding author
  1. Robert Koch Institute, Germany
  2. Newcastle University, United Kingdom
  3. University of Göttingen, Germany
  4. Northern Institute for Cancer Research, United Kingdom
Research Article
  • Cited 4
  • Views 1,020
  • Annotations
Cite this article as: eLife 2020;9:e56048 doi: 10.7554/eLife.56048

Abstract

Peptidoglycan (PG) is the main component of bacterial cell walls and the target for many antibiotics. PG biosynthesis is tightly coordinated with cell wall growth and turnover, and many of these control activities depend upon PASTA-domain containing eukaryotic-like serine/threonine protein kinases (PASTA-eSTK) that sense PG fragments. However, only a few PG biosynthetic enzymes are direct kinase substrates. Here, we identify the conserved ReoM protein as a novel PASTA-eSTK substrate in the Gram-positive pathogen Listeria monocytogenes. Our data show that the phosphorylation of ReoM is essential as it controls ClpCP-dependent proteolytic degradation of the essential enzyme MurA, which catalyses the first committed step in PG biosynthesis. We also identify ReoY as a second novel factor required for degradation of ClpCP substrates. Collectively, our data imply that the first committed step of PG biosynthesis is activated through control of ClpCP protease activity in response to signals of PG homeostasis imbalance.

Article and author information

Author details

  1. Sabrina Wamp

    FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Zoe J Rutter

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Jeanine Rismondo

    Department of General Microbiology, University of Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Claire E Jennings

    Newcastle Drug Discovery, Northern Institute for Cancer Research, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lars Möller

    ZBS 4 - Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard J Lewis

    Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Sven Halbedel

    FG11 - Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
    For correspondence
    halbedels@rki.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5575-8973

Funding

Deutsche Forschungsgemeinschaft (HA 6830/1-1)

  • Sven Halbedel

Deutsche Forschungsgemeinschaft (HA 6830/1-2)

  • Sven Halbedel

Fonds der chemischen Industrie (661460)

  • Sven Halbedel

Biotechnology and Biological Sciences Research Council (BB/M011186/1)

  • Richard J Lewis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Publication history

  1. Received: February 14, 2020
  2. Accepted: May 27, 2020
  3. Accepted Manuscript published: May 29, 2020 (version 1)
  4. Version of Record published: June 10, 2020 (version 2)

Copyright

© 2020, Wamp et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,020
    Page views
  • 182
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Marcos H de Moraes et al.
    Research Article

    When bacterial cells come in contact, antagonism mediated by the delivery of toxins frequently ensues. The potential for such encounters to have long-term beneficial consequences in recipient cells has not been investigated. Here we examined the effects of intoxication by DddA, a cytosine deaminase delivered via the type VI secretion system (T6SS) of Burkholderia cenocepacia. Despite its killing potential, we observed that several bacterial species resist DddA and instead accumulate mutations. These mutations can lead to the acquisition of antibiotic resistance, indicating that even in the absence of killing, interbacterial antagonism can have profound consequences on target populations. Investigation of additional toxins from the deaminase superfamily revealed that mutagenic activity is a common feature of these proteins, including a representative we show targets single-stranded DNA and displays a markedly divergent structure. Our findings suggest that a surprising consequence of antagonistic interactions between bacteria could be the promotion of adaptation via the action of directly mutagenic toxins.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Martin Steen Mortensen et al.
    Research Article

    Early-life microbiota has been linked to the development of chronic inflammatory diseases. It has been hypothesized that maternal vaginal microbiota is an important initial seeding source and therefore might have lifelong effects on disease risk. To understand maternal vaginal microbiota’s role in seeding the child’s microbiota and the extent of delivery mode-dependent transmission, we studied 665 mother–child dyads from the COPSAC2010 cohort. The maternal vaginal microbiota was evaluated twice in the third trimester and compared with the children’s fecal (at 1 week, 1 month, and 1 year of age) and airway microbiota (at 1 week, 1 month, and 3 months). Based on the concept of weighted transfer ratios (WTRs), we have identified bacterial orders for which the WTR displays patterns indicate persistent or transient transfer from the maternal vaginal microbiome, as well as orders that are shared at later time points independent of delivery mode, indicating a common reservoir.