1. Chromosomes and Gene Expression
Download icon

Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression

  1. Stefan Meinke
  2. Gesine Goldammer
  3. A Ioana Weber
  4. Victor Tarabykin
  5. Alexander Neumann
  6. Marco Preussner  Is a corresponding author
  7. Florian Heyd  Is a corresponding author
  1. FU Berlin, Germany
  2. Charité-Universitätsmedizin Berlin, Germany
Short Report
  • Cited 0
  • Views 1,064
  • Annotations
Cite this article as: eLife 2020;9:e56075 doi: 10.7554/eLife.56075

Abstract

Minor and major spliceosomes control splicing of distinct intron types and are thought to act largely independent of one another. SR proteins are essential splicing regulators mostly connected to the major spliceosome. Here, we show that Srsf10 expression is controlled through an autoregulated minor intron, tightly correlating Srsf10 with minor spliceosome abundance across different tissues and differentiation stages in mammals. Surprisingly, all other SR proteins also correlate with the minor spliceosome and Srsf10, and abolishing Srsf10 autoregulation by Crispr/Cas9-mediated deletion of the autoregulatory exon induces expression of all SR proteins in a human cell line. Our data thus reveal extensive crosstalk and a global impact of the minor spliceosome on major intron splicing.

Article and author information

Author details

  1. Stefan Meinke

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5083-3383
  2. Gesine Goldammer

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. A Ioana Weber

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Victor Tarabykin

    Institute for Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander Neumann

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marco Preussner

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    For correspondence
    mpreussner@zedat.fu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
  7. Florian Heyd

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    For correspondence
    florian.heyd@fu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9377-9882

Funding

Deutsche Forschungsgemeinschaft (278001972 - TRR 186)

  • Florian Heyd

Deutsche Forschungsgemeinschaft (TA303/8-1)

  • Victor Tarabykin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Colonies of wild type mice of the NMRI strain were maintained in the animal facilities of Charité-Universitätsmedizin Berlin. Tissue collection was performed in compliance with German Animal Welfare Law and regulations imposed by the State Office for Health and Social Affairs Council in Berlin / Landesamt für Gesundheit und Soziales (LAGeSo) under licence T102/11.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Publication history

  1. Received: February 16, 2020
  2. Accepted: April 24, 2020
  3. Accepted Manuscript published: April 27, 2020 (version 1)
  4. Version of Record published: May 22, 2020 (version 2)

Copyright

© 2020, Meinke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,064
    Page views
  • 216
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Jay F Sarthy et al.
    Research Article Updated

    Lysine 27-to-methionine (K27M) mutations in the H3.1 or H3.3 histone genes are characteristic of pediatric diffuse midline gliomas (DMGs). These oncohistone mutations dominantly inhibit histone H3K27 trimethylation and silencing, but it is unknown how oncohistone type affects gliomagenesis. We show that the genomic distributions of H3.1 and H3.3 oncohistones in human patient-derived DMG cells are consistent with the DNAreplication-coupled deposition of histone H3.1 and the predominant replication-independent deposition of histone H3.3. Although H3K27 trimethylation is reduced for both oncohistone types, H3.3K27M-bearing cells retain some domains, and only H3.1K27M-bearing cells lack H3K27 trimethylation. Neither oncohistone interferes with PRC2 binding. Using Drosophila as a model, we demonstrate that inhibition of H3K27 trimethylation occurs only when H3K27M oncohistones are deposited into chromatin and only when expressed in cycling cells. We propose that oncohistones inhibit the H3K27 methyltransferase as chromatin patterns are being duplicated in proliferating cells, predisposing them to tumorigenesis.

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Jo Hepworth et al.
    Research Article Updated

    In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analysing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLChaplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.