Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression

  1. Stefan Meinke
  2. Gesine Goldammer
  3. A Ioana Weber
  4. Victor Tarabykin
  5. Alexander Neumann
  6. Marco Preussner  Is a corresponding author
  7. Florian Heyd  Is a corresponding author
  1. FU Berlin, Germany
  2. Charité-Universitätsmedizin Berlin, Germany

Abstract

Minor and major spliceosomes control splicing of distinct intron types and are thought to act largely independent of one another. SR proteins are essential splicing regulators mostly connected to the major spliceosome. Here, we show that Srsf10 expression is controlled through an autoregulated minor intron, tightly correlating Srsf10 with minor spliceosome abundance across different tissues and differentiation stages in mammals. Surprisingly, all other SR proteins also correlate with the minor spliceosome and Srsf10, and abolishing Srsf10 autoregulation by Crispr/Cas9-mediated deletion of the autoregulatory exon induces expression of all SR proteins in a human cell line. Our data thus reveal extensive crosstalk and a global impact of the minor spliceosome on major intron splicing.

Data availability

We have only used data that are publically available.

The following previously published data sets were used

Article and author information

Author details

  1. Stefan Meinke

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5083-3383
  2. Gesine Goldammer

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. A Ioana Weber

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Victor Tarabykin

    Institute for Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander Neumann

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marco Preussner

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    For correspondence
    mpreussner@zedat.fu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
  7. Florian Heyd

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    For correspondence
    florian.heyd@fu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9377-9882

Funding

Deutsche Forschungsgemeinschaft (278001972 - TRR 186)

  • Florian Heyd

Deutsche Forschungsgemeinschaft (TA303/8-1)

  • Victor Tarabykin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Colonies of wild type mice of the NMRI strain were maintained in the animal facilities of Charité-Universitätsmedizin Berlin. Tissue collection was performed in compliance with German Animal Welfare Law and regulations imposed by the State Office for Health and Social Affairs Council in Berlin / Landesamt für Gesundheit und Soziales (LAGeSo) under licence T102/11.

Copyright

© 2020, Meinke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,382
    views
  • 319
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefan Meinke
  2. Gesine Goldammer
  3. A Ioana Weber
  4. Victor Tarabykin
  5. Alexander Neumann
  6. Marco Preussner
  7. Florian Heyd
(2020)
Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression
eLife 9:e56075.
https://doi.org/10.7554/eLife.56075

Share this article

https://doi.org/10.7554/eLife.56075

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.