Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression

  1. Stefan Meinke
  2. Gesine Goldammer
  3. A Ioana Weber
  4. Victor Tarabykin
  5. Alexander Neumann
  6. Marco Preussner  Is a corresponding author
  7. Florian Heyd  Is a corresponding author
  1. FU Berlin, Germany
  2. Charité-Universitätsmedizin Berlin, Germany

Abstract

Minor and major spliceosomes control splicing of distinct intron types and are thought to act largely independent of one another. SR proteins are essential splicing regulators mostly connected to the major spliceosome. Here, we show that Srsf10 expression is controlled through an autoregulated minor intron, tightly correlating Srsf10 with minor spliceosome abundance across different tissues and differentiation stages in mammals. Surprisingly, all other SR proteins also correlate with the minor spliceosome and Srsf10, and abolishing Srsf10 autoregulation by Crispr/Cas9-mediated deletion of the autoregulatory exon induces expression of all SR proteins in a human cell line. Our data thus reveal extensive crosstalk and a global impact of the minor spliceosome on major intron splicing.

Data availability

We have only used data that are publically available.

The following previously published data sets were used

Article and author information

Author details

  1. Stefan Meinke

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5083-3383
  2. Gesine Goldammer

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. A Ioana Weber

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Victor Tarabykin

    Institute for Cell and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Alexander Neumann

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Marco Preussner

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    For correspondence
    mpreussner@zedat.fu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
  7. Florian Heyd

    Institute of Chemistry and Biochemistry, FU Berlin, Berlin, Germany
    For correspondence
    florian.heyd@fu-berlin.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9377-9882

Funding

Deutsche Forschungsgemeinschaft (278001972 - TRR 186)

  • Florian Heyd

Deutsche Forschungsgemeinschaft (TA303/8-1)

  • Victor Tarabykin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Ethics

Animal experimentation: Colonies of wild type mice of the NMRI strain were maintained in the animal facilities of Charité-Universitätsmedizin Berlin. Tissue collection was performed in compliance with German Animal Welfare Law and regulations imposed by the State Office for Health and Social Affairs Council in Berlin / Landesamt für Gesundheit und Soziales (LAGeSo) under licence T102/11.

Version history

  1. Received: February 16, 2020
  2. Accepted: April 24, 2020
  3. Accepted Manuscript published: April 27, 2020 (version 1)
  4. Version of Record published: May 22, 2020 (version 2)

Copyright

© 2020, Meinke et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,259
    views
  • 311
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Stefan Meinke
  2. Gesine Goldammer
  3. A Ioana Weber
  4. Victor Tarabykin
  5. Alexander Neumann
  6. Marco Preussner
  7. Florian Heyd
(2020)
Srsf10 and the minor spliceosome control tissue-specific and dynamic SR protein expression
eLife 9:e56075.
https://doi.org/10.7554/eLife.56075

Share this article

https://doi.org/10.7554/eLife.56075

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.