1. Developmental Biology
Download icon

The Wg and Dpp morphogens regulate gene expression by modulating the frequency of transcriptional bursts

  1. Rachael Bakker
  2. Madhav Mani  Is a corresponding author
  3. Richard W Carthew  Is a corresponding author
  1. Northwestern University, United States
Research Article
  • Cited 4
  • Views 1,566
  • Annotations
Cite this article as: eLife 2020;9:e56076 doi: 10.7554/eLife.56076

Abstract

Morphogen signaling contributes to the patterned spatiotemporal expression of genes during development. One mode of regulation of signaling-responsive genes is at the level of transcription. Single-cell quantitative studies of transcription have revealed that transcription occurs intermittently, in bursts. Although the effects of many gene regulatory mechanisms on transcriptional bursting have been studied, it remains unclear how morphogen gradients affect this dynamic property of downstream genes. Here we have adapted single molecule fluorescence in situ hybridization (smFISH) for use in the Drosophila wing imaginal disc in order to measure nascent and mature mRNA of genes downstream of the Wg and Dpp morphogen gradients. We compared our experimental results with predictions from stochastic models of transcription, which indicated that the transcription levels of these genes appear to share a common method of control via burst frequency modulation. Our data helps further elucidate the link between developmental gene regulatory mechanisms and transcriptional bursting.

Data availability

All smFISH data after image segmentation have been deposited in the Public Data Repository at Northwestern University's Library. These data are freely available at https://doi.org/10.21985/n2-rfax-bk36 There are no restrictions.

The following data sets were generated
    1. Bakker R
    2. Mani M
    3. Carthew RW
    (2020) Data related to Bakker et al 2020 eLife paper
    Northwestern University Library Data Repository, doi.org/10.21985/n2-rfax-bk36.

Article and author information

Author details

  1. Rachael Bakker

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Madhav Mani

    Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, United States
    For correspondence
    madhav.mani@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard W Carthew

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    r-carthew@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0343-0156

Funding

National Institutes of Health (R35GM118144)

  • Richard W Carthew

National Institutes of Health (T32CA080621)

  • Rachael Bakker

National Science Foundation (1764421)

  • Madhav Mani
  • Richard W Carthew

Simons Foundation (597491)

  • Madhav Mani
  • Richard W Carthew

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Publication history

  1. Received: February 16, 2020
  2. Accepted: June 18, 2020
  3. Accepted Manuscript published: June 22, 2020 (version 1)
  4. Version of Record published: July 7, 2020 (version 2)

Copyright

© 2020, Bakker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,566
    Page views
  • 319
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Sonia Taïb et al.
    Research Article Updated

    Peripheral nerves are vascularized by a dense network of blood vessels to guarantee their complex function. Despite the crucial role of vascularization to ensure nerve homeostasis and regeneration, the mechanisms governing nerve invasion by blood vessels remain poorly understood. We found, in mice, that the sciatic nerve invasion by blood vessels begins around embryonic day 16 and continues until birth. Interestingly, intra-nervous blood vessel density significantly decreases during post-natal period, starting from P10. We show that, while the axon guidance molecule Netrin-1 promotes nerve invasion by blood vessels via the endothelial receptor UNC5B during embryogenesis, myelinated Schwann cells negatively control intra-nervous vascularization during post-natal period.

    1. Developmental Biology
    Merlin Lange et al.
    Research Article Updated

    In the past few decades, aquatic animals have become popular model organisms in biology, spurring a growing need for establishing aquatic facilities. Zebrafish are widely studied and relatively easy to culture using commercial systems. However, a challenging aspect of maintaining aquatic facilities is animal feeding, which is both time- and resource-consuming. We have developed an open-source fully automatic daily feeding system, Zebrafish Automatic Feeder (ZAF). ZAF is reliable, provides a standardized amount of food to every tank, is cost-efficient and easy to build. The advanced version, ZAF+, allows for the precise control of food distribution as a function of fish density per tank, and has a user-friendly interface. Both ZAF and ZAF+ are adaptable to any laboratory environment and facilitate the implementation of aquatic colonies. Here, we provide all blueprints and instructions for building the mechanics, electronics, fluidics, as well as to setup the control software and its user-friendly graphical interface. Importantly, the design is modular and can be scaled to meet different user needs. Furthermore, our results show that ZAF and ZAF+ do not adversely affect zebrafish culture, enabling fully automatic feeding for any aquatic facility.