Abstract

Secretory (S) Immunoglobulin (I) A is the predominant mucosal antibody, which binds pathogens and commensal microbes. SIgA is a polymeric antibody, typically containing two copies of IgA that assemble with one joining-chain (JC) to form dimeric (d) IgA that is bound by the polymeric Ig-receptor ectodomain, called secretory component (SC). Here we report the cryo-electron microscopy structures of murine SIgA and dIgA. Structures reveal two IgAs conjoined through four heavy-chain tailpieces and the JC that together form a b-sandwich-like fold. The two IgAs are bent and tilted with respect to each other, forming distinct concave and convex surfaces. In SIgA, SC is bound to one face, asymmetrically contacting both IgAs and JC. The bent and tilted arrangement of complex components limits the possible positions of both sets of antigen binding fragments (Fabs) and preserves steric accessibility to receptor binding sites, likely influencing antigen binding and effector functions.

Data availability

SIgA and dIgA cryoEM maps and structure coordinate files have been deposited in the EM databank with accession codes EMD-22309 (dIgA) and EMD-22310 (SIgA) and the protein databank with accession codes 7JG1(dIgA) and 7JG2 (SIgA).

The following data sets were generated

Article and author information

Author details

  1. Sonya Kumar Bharathkar

    Department of Biochemistry, University of Illinois-Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin W Parker

    Department of Biochemistry, University of Illinois-Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrey G Malyutin

    Division of Biology and Biological Engineering; Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nandan Haloi

    Department of Biochemistry; Center for Biophysics and Quantitative Biology, University of Illinois-Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kathryn E Huey-Tubman

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Emad Tajkhorshid

    Biochemistry, University of Illinois-Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8434-1010
  7. Beth Stadtmueller

    Department of Biochemistry, University of Illinois-Urbana Champaign, Urbana, United States
    For correspondence
    bethms@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0637-3206

Funding

University of Illinois at Urbana-Champaign (Start-up funding)

  • Sonya Kumar Bharathkar

University of Illinois at Urbana-Champaign (Start-up funding)

  • Benjamin W Parker

University of Illinois at Urbana-Champaign (Start-up funding)

  • Beth Stadtmueller

National Institute of Allergy and Infectious Diseases (AI04123)

  • Beth Stadtmueller

National Institute of General Medical Sciences (P41-GM10460)

  • Nandan Haloi

National Institute of General Medical Sciences (P41-GM10460)

  • Emad Tajkhorshid

National Institute of Allergy and Infectious Diseases (AI04123)

  • Kathryn E Huey-Tubman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Kumar Bharathkar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonya Kumar Bharathkar
  2. Benjamin W Parker
  3. Andrey G Malyutin
  4. Nandan Haloi
  5. Kathryn E Huey-Tubman
  6. Emad Tajkhorshid
  7. Beth Stadtmueller
(2020)
The structures of Secretory and dimeric Immunoglobulin A
eLife 9:e56098.
https://doi.org/10.7554/eLife.56098

Share this article

https://doi.org/10.7554/eLife.56098

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Benita Martin-Castaño, Patricia Diez-Echave ... Julio Galvez
    Research Article

    Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity, and microbiota could play a key role in the infection, progression, and outcome of the disease. SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. To identify new prognostic markers for the disease, a multicentre prospective observational cohort study was carried out in COVID-19 patients divided into three cohorts based on symptomatology: mild (n = 24), moderate (n = 51), and severe/critical (n = 31). Faecal and nasopharyngeal samples were taken, and the microbiota was analysed. Linear discriminant analysis identified Mycoplasma salivarium, Prevotella dentalis, and Haemophilus parainfluenzae as biomarkers of severe COVID-19 in nasopharyngeal microbiota, while Prevotella bivia and Prevotella timonensis were defined in faecal microbiota. Additionally, a connection between faecal and nasopharyngeal microbiota was identified, with a significant ratio between P. timonensis (faeces) and P. dentalis and M. salivarium (nasopharyngeal) abundances found in critically ill patients. This ratio could serve as a novel prognostic tool for identifying severe COVID-19 cases.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.