Abstract

Secretory (S) Immunoglobulin (I) A is the predominant mucosal antibody, which binds pathogens and commensal microbes. SIgA is a polymeric antibody, typically containing two copies of IgA that assemble with one joining-chain (JC) to form dimeric (d) IgA that is bound by the polymeric Ig-receptor ectodomain, called secretory component (SC). Here we report the cryo-electron microscopy structures of murine SIgA and dIgA. Structures reveal two IgAs conjoined through four heavy-chain tailpieces and the JC that together form a b-sandwich-like fold. The two IgAs are bent and tilted with respect to each other, forming distinct concave and convex surfaces. In SIgA, SC is bound to one face, asymmetrically contacting both IgAs and JC. The bent and tilted arrangement of complex components limits the possible positions of both sets of antigen binding fragments (Fabs) and preserves steric accessibility to receptor binding sites, likely influencing antigen binding and effector functions.

Data availability

SIgA and dIgA cryoEM maps and structure coordinate files have been deposited in the EM databank with accession codes EMD-22309 (dIgA) and EMD-22310 (SIgA) and the protein databank with accession codes 7JG1(dIgA) and 7JG2 (SIgA).

The following data sets were generated

Article and author information

Author details

  1. Sonya Kumar Bharathkar

    Department of Biochemistry, University of Illinois-Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin W Parker

    Department of Biochemistry, University of Illinois-Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrey G Malyutin

    Division of Biology and Biological Engineering; Beckman Institute, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nandan Haloi

    Department of Biochemistry; Center for Biophysics and Quantitative Biology, University of Illinois-Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kathryn E Huey-Tubman

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Emad Tajkhorshid

    Biochemistry, University of Illinois-Urbana Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8434-1010
  7. Beth Stadtmueller

    Department of Biochemistry, University of Illinois-Urbana Champaign, Urbana, United States
    For correspondence
    bethms@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0637-3206

Funding

University of Illinois at Urbana-Champaign (Start-up funding)

  • Sonya Kumar Bharathkar

University of Illinois at Urbana-Champaign (Start-up funding)

  • Benjamin W Parker

University of Illinois at Urbana-Champaign (Start-up funding)

  • Beth Stadtmueller

National Institute of Allergy and Infectious Diseases (AI04123)

  • Beth Stadtmueller

National Institute of General Medical Sciences (P41-GM10460)

  • Nandan Haloi

National Institute of General Medical Sciences (P41-GM10460)

  • Emad Tajkhorshid

National Institute of Allergy and Infectious Diseases (AI04123)

  • Kathryn E Huey-Tubman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Kumar Bharathkar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,180
    views
  • 1,068
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonya Kumar Bharathkar
  2. Benjamin W Parker
  3. Andrey G Malyutin
  4. Nandan Haloi
  5. Kathryn E Huey-Tubman
  6. Emad Tajkhorshid
  7. Beth Stadtmueller
(2020)
The structures of Secretory and dimeric Immunoglobulin A
eLife 9:e56098.
https://doi.org/10.7554/eLife.56098

Share this article

https://doi.org/10.7554/eLife.56098

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Immunology and Inflammation
    Hong Yu, Hiroshi Nishio ... Drew Pardoll
    Research Article

    The adaptive T cell response is accompanied by continuous rewiring of the T cell’s electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report in mice that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency in mice causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.