Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior

  1. Sthitapranjya Pati  Is a corresponding author
  2. Kamal Saba
  3. Sonali S Salvi
  4. Praachi Tiwari
  5. Pratik R Chaudhari
  6. Vijaya Verma
  7. Sourish Mukhopadhyay
  8. Darshana Kapri
  9. Shital Suryavanshi
  10. James P Clement
  11. Anant B Patel
  12. Vidita A Vaidya  Is a corresponding author
  1. Tata Institute of Fundamental Research, India
  2. Centre for Cellular and Molecular Biology, India
  3. Jawaharlal Nehru Centre for Advanced Scientific Research, India

Abstract

Early adversity is a risk factor for the development of adult psychopathology. Common across multiple rodent models of early adversity is increased signaling via forebrain Gq-coupled neurotransmitter receptors. We addressed whether enhanced Gq-mediated signaling in forebrain excitatory neurons during postnatal life can evoke persistent mood-related behavioral changes. Excitatory hM3Dq DREADD-mediated chemogenetic activation of forebrain excitatory neurons during postnatal life (P2-14), but not in juvenile or adult windows, increased anxiety-, despair-, and schizophrenia-like behavior in adulthood. This was accompanied by an enhanced metabolic rate of cortical and hippocampal glutamatergic and GABAergic neurons. Furthermore, we observed reduced activity and plasticity-associated marker expression, and perturbed excitatory/inhibitory currents in the hippocampus. These results indicate that Gq signaling mediated activation of forebrain excitatory neurons during the critical postnatal window is sufficient to program altered mood-related behavior, as well as functional changes in forebrain glutamate and GABA systems, recapitulating aspects of the consequences of early adversity.

Data availability

All data generated or analysed during are included in the manuscript and supporting files. Source data files have been provided for Figure 2 and Figure 3.

Article and author information

Author details

  1. Sthitapranjya Pati

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    For correspondence
    sthita.pati@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8598-4376
  2. Kamal Saba

    NMR spectroscopy and microimaging, Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1729-9961
  3. Sonali S Salvi

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  4. Praachi Tiwari

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  5. Pratik R Chaudhari

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  6. Vijaya Verma

    Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
    Competing interests
    No competing interests declared.
  7. Sourish Mukhopadhyay

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  8. Darshana Kapri

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  9. Shital Suryavanshi

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  10. James P Clement

    Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
    Competing interests
    No competing interests declared.
  11. Anant B Patel

    CSIR, Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  12. Vidita A Vaidya

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    For correspondence
    vvaidya@tifr.res.in
    Competing interests
    Vidita A Vaidya, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3907-8580

Funding

Tata Institute of Fundamental Research (RTI4003)

  • Vidita A Vaidya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were carried out in strict accordance with the guideline of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India. Experiments and use of animals were approved by the institutional ethics committees of the Tata Institute of Fundamental Research, Mumbai, India (TIFR/IAEC/2017-2; 56/GO/ReBi/S/99/CPCSEA); Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India ( JPC001, JPC005; 201/GO/Re/S/2000/CPCSEA); and Centre for Cellular and Molecular Biology, Hyderabad, India (IAEC 32/2018; 20/GO/RBi/S/99/CPCSEA). Care was taken across all experiments to minimize animal suffering and restrict the number of animals used.

Copyright

© 2020, Pati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,542
    views
  • 541
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sthitapranjya Pati
  2. Kamal Saba
  3. Sonali S Salvi
  4. Praachi Tiwari
  5. Pratik R Chaudhari
  6. Vijaya Verma
  7. Sourish Mukhopadhyay
  8. Darshana Kapri
  9. Shital Suryavanshi
  10. James P Clement
  11. Anant B Patel
  12. Vidita A Vaidya
(2020)
Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior
eLife 9:e56171.
https://doi.org/10.7554/eLife.56171

Share this article

https://doi.org/10.7554/eLife.56171

Further reading

    1. Neuroscience
    Christine Ahrends, Mark W Woolrich, Diego Vidaurre
    Tools and Resources

    Predicting an individual’s cognitive traits or clinical condition using brain signals is a central goal in modern neuroscience. This is commonly done using either structural aspects, such as structural connectivity or cortical thickness, or aggregated measures of brain activity that average over time. But these approaches are missing a central aspect of brain function: the unique ways in which an individual’s brain activity unfolds over time. One reason why these dynamic patterns are not usually considered is that they have to be described by complex, high-dimensional models; and it is unclear how best to use these models for prediction. We here propose an approach that describes dynamic functional connectivity and amplitude patterns using a Hidden Markov model (HMM) and combines it with the Fisher kernel, which can be used to predict individual traits. The Fisher kernel is constructed from the HMM in a mathematically principled manner, thereby preserving the structure of the underlying model. We show here, in fMRI data, that the HMM-Fisher kernel approach is accurate and reliable. We compare the Fisher kernel to other prediction methods, both time-varying and time-averaged functional connectivity-based models. Our approach leverages information about an individual’s time-varying amplitude and functional connectivity for prediction and has broad applications in cognitive neuroscience and personalised medicine.

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article Updated

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain–behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within = 0.36, LC1out = 0.03; LC2within = 0.34, LC2out = 0.05; LC3within = 0.35, LC3out = 0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.