1. Neuroscience
Download icon

Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior

  1. Sthitapranjya Pati  Is a corresponding author
  2. Kamal Saba
  3. Sonali S Salvi
  4. Praachi Tiwari
  5. Pratik R Chaudhari
  6. Vijaya Verma
  7. Sourish Mukhopadhyay
  8. Darshana Kapri
  9. Shital Suryavanshi
  10. James P Clement
  11. Anant B Patel
  12. Vidita A Vaidya  Is a corresponding author
  1. Tata Institute of Fundamental Research, India
  2. Centre for Cellular and Molecular Biology, India
  3. Jawaharlal Nehru Centre for Advanced Scientific Research, India
Research Article
  • Cited 0
  • Views 1,004
  • Annotations
Cite this article as: eLife 2020;9:e56171 doi: 10.7554/eLife.56171

Abstract

Early adversity is a risk factor for the development of adult psychopathology. Common across multiple rodent models of early adversity is increased signaling via forebrain Gq-coupled neurotransmitter receptors. We addressed whether enhanced Gq-mediated signaling in forebrain excitatory neurons during postnatal life can evoke persistent mood-related behavioral changes. Excitatory hM3Dq DREADD-mediated chemogenetic activation of forebrain excitatory neurons during postnatal life (P2-14), but not in juvenile or adult windows, increased anxiety-, despair-, and schizophrenia-like behavior in adulthood. This was accompanied by an enhanced metabolic rate of cortical and hippocampal glutamatergic and GABAergic neurons. Furthermore, we observed reduced activity and plasticity-associated marker expression, and perturbed excitatory/inhibitory currents in the hippocampus. These results indicate that Gq signaling mediated activation of forebrain excitatory neurons during the critical postnatal window is sufficient to program altered mood-related behavior, as well as functional changes in forebrain glutamate and GABA systems, recapitulating aspects of the consequences of early adversity.

Article and author information

Author details

  1. Sthitapranjya Pati

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    For correspondence
    sthita.pati@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8598-4376
  2. Kamal Saba

    NMR spectroscopy and microimaging, Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1729-9961
  3. Sonali S Salvi

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  4. Praachi Tiwari

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  5. Pratik R Chaudhari

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  6. Vijaya Verma

    Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
    Competing interests
    No competing interests declared.
  7. Sourish Mukhopadhyay

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  8. Darshana Kapri

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  9. Shital Suryavanshi

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    Competing interests
    No competing interests declared.
  10. James P Clement

    Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
    Competing interests
    No competing interests declared.
  11. Anant B Patel

    CSIR, Centre for Cellular and Molecular Biology, Hyderabad, India
    Competing interests
    No competing interests declared.
  12. Vidita A Vaidya

    Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
    For correspondence
    vvaidya@tifr.res.in
    Competing interests
    Vidita A Vaidya, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3907-8580

Funding

Tata Institute of Fundamental Research (RTI4003)

  • Vidita A Vaidya

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were carried out in strict accordance with the guideline of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India. Experiments and use of animals were approved by the institutional ethics committees of the Tata Institute of Fundamental Research, Mumbai, India (TIFR/IAEC/2017-2; 56/GO/ReBi/S/99/CPCSEA); Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India ( JPC001, JPC005; 201/GO/Re/S/2000/CPCSEA); and Centre for Cellular and Molecular Biology, Hyderabad, India (IAEC 32/2018; 20/GO/RBi/S/99/CPCSEA). Care was taken across all experiments to minimize animal suffering and restrict the number of animals used.

Reviewing Editor

  1. Joseph F Cheer, University of Maryland School of Medicine, United States

Publication history

  1. Received: February 19, 2020
  2. Accepted: September 18, 2020
  3. Accepted Manuscript published: September 21, 2020 (version 1)

Copyright

© 2020, Pati et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,004
    Page views
  • 192
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Yasmine Cantaut-Belarif et al.
    Research Article Updated

    The cerebrospinal fluid (CSF) contains an extracellular thread conserved in vertebrates, the Reissner fiber, which controls body axis morphogenesis in the zebrafish embryo. Yet, the signaling cascade originating from this fiber to ensure body axis straightening is not understood. Here, we explore the functional link between the Reissner fiber and undifferentiated spinal neurons contacting the CSF (CSF-cNs). First, we show that the Reissner fiber is required in vivo for the expression of urp2, a neuropeptide expressed in CSF-cNs. We show that the Reissner fiber is also required for embryonic calcium transients in these spinal neurons. Finally, we study how local adrenergic activation can substitute for the Reissner fiber-signaling pathway to CSF-cNs and rescue body axis morphogenesis. Our results show that the Reissner fiber acts on CSF-cNs and thereby contributes to establish body axis morphogenesis, and suggest it does so by controlling the availability of a chemical signal in the CSF.

    1. Neuroscience
    Bob Bramson et al.
    Short Report

    Control over emotional action tendencies is essential for everyday interactions. This cognitive function fails occasionally during socially challenging situations, and systematically in social psychopathologies. We delivered dual-site phase-coupled brain stimulation to facilitate theta-gamma phase-amplitude coupling between frontal regions known to implement that form of control, while neuropsychologically healthy human male participants were challenged to control their automatic action tendencies in a social–emotional approach/avoidance-task. Participants had increased control over their emotional action tendencies, depending on the relative phase and dose of the intervention. Concurrently measured fMRI effects of task and stimulation indicated that the intervention improved control by increasing the efficacy of anterior prefrontal inhibition over the sensorimotor cortex. This enhancement of emotional action control provides causal evidence for phase-amplitude coupling mechanisms guiding action selection during emotional-action control. Generally, the finding illustrates the potential of physiologically-grounded interventions aimed at reducing neural noise in cerebral circuits where communication relies on phase-amplitude coupling.