Sequential activation of transcriptional repressors promotes progenitor commitment by silencing stem cell identity genes

  1. Noemi Rives- Quinto
  2. Hideyuki Komori
  3. Cyrina M Ostgaard
  4. Derek H Janssens
  5. Shu Kondo
  6. Qi Dai
  7. Adrian W Moore
  8. Cheng-Yu Lee  Is a corresponding author
  1. University of Michigan, United States
  2. Fred Hutchinson Cancer Research Center, United States
  3. National Institute of Genetics, Japan
  4. Stockholm University, Sweden
  5. Riken Brain Science Institute, Japan

Abstract

Stem cells that indirectly generate differentiated cells through intermediate progenitors drives vertebrate brain evolution. Due to a lack of lineage information, how stem cell functionality, including the competency to generate intermediate progenitors, becomes extinguished during progenitor commitment remains unclear. Type II neuroblasts in fly larval brains divide asymmetrically to generate a neuroblast and a progeny that commits to an intermediate progenitor (INP) identity. We identified Tailless (Tll) as a master regulator of type II neuroblast functional identity, including the competency to generate INPs. Successive expression of transcriptional repressors functions through Hdac3 to silence tll during INP commitment. Reducing repressor activity allows re-activation of Notch in INPs to ectopically induce tll expression driving supernumerary neuroblast formation. Knocking down hdac3 function prevents downregulation of tll during INP commitment. We propose that continual inactivation of stem cell identity genes allows intermediate progenitors to stably commit to generating diverse differentiated cells during indirect neurogenesis.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE152636.

The following data sets were generated

Article and author information

Author details

  1. Noemi Rives- Quinto

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hideyuki Komori

    Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cyrina M Ostgaard

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Derek H Janssens

    Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shu Kondo

    Genetic Strains Research Center, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4625-8379
  6. Qi Dai

    Molecular BioScience, the Winner-Gren Institute, Stockholm University, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Adrian W Moore

    Riken Brain Science Institute, Wako, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Cheng-Yu Lee

    Life Sciences Institute, University of Michigan, Ann Arbor, United States
    For correspondence
    leecheng@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2291-1297

Funding

National Institute of Neurological Disorders and Stroke (R01NS107496)

  • Hideyuki Komori
  • Cheng-Yu Lee

National Institute of Neurological Disorders and Stroke (R01NS111647)

  • Hideyuki Komori
  • Cheng-Yu Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claude Desplan, New York University, United States

Version history

  1. Received: February 20, 2020
  2. Accepted: November 25, 2020
  3. Accepted Manuscript published: November 26, 2020 (version 1)
  4. Version of Record published: December 10, 2020 (version 2)

Copyright

© 2020, Rives- Quinto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,396
    Page views
  • 217
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Noemi Rives- Quinto
  2. Hideyuki Komori
  3. Cyrina M Ostgaard
  4. Derek H Janssens
  5. Shu Kondo
  6. Qi Dai
  7. Adrian W Moore
  8. Cheng-Yu Lee
(2020)
Sequential activation of transcriptional repressors promotes progenitor commitment by silencing stem cell identity genes
eLife 9:e56187.
https://doi.org/10.7554/eLife.56187

Further reading

    1. Stem Cells and Regenerative Medicine
    Lampros Mavrommatis, Hyun-Woo Jeong ... Holm Zaehres
    Research Article

    In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Lars N Royall, Diana Machado ... Annina Denoth-Lippuner
    Research Article Updated

    During human forebrain development, neural progenitor cells (NPCs) in the ventricular zone (VZ) undergo asymmetric cell divisions to produce a self-renewed progenitor cell, maintaining the potential to go through additional rounds of cell divisions, and differentiating daughter cells, populating the developing cortex. Previous work in the embryonic rodent brain suggested that the preferential inheritance of the pre-existing (older) centrosome to the self-renewed progenitor cell is required to maintain stem cell properties, ensuring proper neurogenesis. If asymmetric segregation of centrosomes occurs in NPCs of the developing human brain, which depends on unique molecular regulators and species-specific cellular composition, remains unknown. Using a novel, recombination-induced tag exchange-based genetic tool to birthdate and track the segregation of centrosomes over multiple cell divisions in human embryonic stem cell-derived regionalised forebrain organoids, we show the preferential inheritance of the older mother centrosome towards self-renewed NPCs. Aberration of asymmetric segregation of centrosomes by genetic manipulation of the centrosomal, microtubule-associated protein Ninein alters fate decisions of NPCs and their maintenance in the VZ of human cortical organoids. Thus, the data described here use a novel genetic approach to birthdate centrosomes in human cells and identify asymmetric inheritance of centrosomes as a mechanism to maintain self-renewal properties and to ensure proper neurogenesis in human NPCs.