Computational Neuroscience: Finding patterns in cortical responses
Any system, including biological systems, can be said to perform a computation when it transforms input information to generate an output. It is thought that many brain computations are performed by neurons (or groups of neurons) receiving input signals that they process to produce output activity, which then becomes input for other neurons. Many computations that brains can perform could, in principle, be carried out through feedforward processes (Yamins et al., 2014). In simple terms, feedforward means that the signals always travel in one direction – forward to the next neuron or network of neurons – and they never travel backwards or sideways to other neurons within a neuron group. In the cortex, however, networks of neurons have substantial 'recurrent' connectivity. Most cortical neurons are connected to other nearby cortical neurons, and therefore, signals can travel sideways due to these recurrent, local connections.
One property of networks with recurrent connectivity is that they can amplify certain inputs to produce larger outputs, while suppressing other inputs or amplifying them by a smaller factor. However, it has been challenging to understand how this can happen without the system displaying unstable or runaway activity, which is undesirable in the brain because it can lead to epileptic seizures. One plausible mechanism for recurrent amplification is known as 'balanced amplification' (Murphy and Miller, 2009). In mathematical network models that support balanced amplification, recurrent connectivity allows certain inputs to produce large outputs, yet the networks still exhibit other properties that are consistent with experimental data (such as fast responses to inputs). Recurrent connections can also influence the timing of neurons’ responses, allowing shorter inputs to create long-lasting, or time-varying outputs (Hennequin et al., 2014).
Neurons can be excitatory or inhibitory: when an excitatory neuron fires, the neuron receiving that input becomes more likely to fire as well, and when an inhibitory neuron fires, the opposite occurs, and the recipient neuron is suppressed. A network of excitatory and inhibitory cells must possess strong recurrent connectivity to support many recurrent computations, including balanced amplification. Here 'strong' means that recurrent connections are sufficiently dense to allow excitatory neurons to amplify other excitatory neurons’ activity, and in this situation, strong inputs from inhibitory neurons are required to stop the network from becoming unstable. More precisely, inhibitory-stabilized network models are those where, if the activity of inhibitory neurons could be locked to a fixed level, the excitatory neurons in the network would then become unstable (Tsodyks et al., 1997). Inhibitory-stabilized networks have been found in several cortical areas, and are seen across a range of levels of network activity – both when sensory stimulation is present, and when it is absent (Ozeki et al., 2009; Li et al., 2019; Sanzeni et al., 2019, but see Mahrach et al., 2020).
The simplest form of strong connectivity amongst excitatory neurons in a network is where the whole excitatory network is unstable. This is the standard inhibitory-stabilized network. But complex neural networks can have multiple unstable excitatory modes, where subgroups of excitatory neurons are unstable and would display runaway behavior if they were not stabilized by inhibition. Networks in which inhibition stabilizes multiple excitatory modes or subgroups are said to be in detailed balance (Vogels and Abbott, 2009; Hennequin et al., 2014; Litwin-Kumar and Doiron, 2014), while those in which inhibition stabilizes a single group of excitatory cells, typically the group of all excitatory cells, are in global balance. As a general rule, networks in detailed balance are also in global balance.
Now, in eLife, Sadra Sadeh and Claudia Clopath from Imperial College London report the result of simulations that show that networks in detailed balance have properties that extend the basic inhibitory-stabilized network (Sadeh and Clopath, 2020). In globally-balanced networks, when inhibitory neurons are stimulated uniformly (all of the neurons across the network receive an input of the same strength) a distinctive ‘paradoxical’ response, where adding input reduces activity, can be observed (Figure 1C). These paradoxical responses can be used as a signature to determine whether the network is an inhibitory-stabilized network (Tsodyks et al., 1997). Sadeh and Clopath extend this idea to detailed-balance networks with multiple unstable excitatory modes. They show that if the inhibitory neurons in these networks receive more complex, patterned stimulation (that is, certain neurons receive a stronger input than others) a predictable paradoxical signature can be observed (Figure 1D). Sadeh and Clopath call networks in which this happens ‘specific inhibitory-stabilized networks’. The connectivity patterns between neurons in their models are consistent with anatomical evidence of structured network connectivity in the cortex (Ko et al., 2013; Znamenskiy et al., 2018). Further, the existence of multiple excitatory submodes in the cortex is suggested by recent experiments that have found preferential amplification of specific patterns of input (Marshel et al., 2019; Peron et al., 2020).
Sadeh and Clopath thus make a concrete prediction: that this “specific paradoxical effect” will be seen in networks where the connectivity between neurons is strong and structured. This prediction can now be tested using a technique called two-photon optogenetics that allows patterned input to be provided to neural networks in vivo with single-cell resolution, both for excitatory and inhibitory neurons (for example, Marshel et al., 2019; Forli et al., 2018).
The article by Sadeh and Clopath also takes a conceptual step forward by considering the information that can be gained about network structure and function by providing each neuron with an input of different strength. This conceptual framework is timely, as two-photon stimulation has this ability to vary the strength of the input to selected neurons. Specifically, Sadeh and Clopath predict that a pattern of input across inhibitory neurons will generate a response that is similar to the input pattern but with opposite sign. These predictions should shape future experiments, yielding new information about a key element of cortical function: how the recurrent connectivity in cortical networks is used for computation.
References
-
Formation and maintenance of neuronal assemblies through synaptic plasticityNature Communications 5:5319.https://doi.org/10.1038/ncomms6319
-
Paradoxical effects of external modulation of inhibitory interneuronsThe Journal of Neuroscience 17:4382–4388.https://doi.org/10.1523/JNEUROSCI.17-11-04382.1997
Article and author information
Author details
Publication history
Copyright
© 2020, Sanzeni and Histed
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,653
- views
-
- 187
- downloads
-
- 3
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Perceptual systems heavily rely on prior knowledge and predictions to make sense of the environment. Predictions can originate from multiple sources of information, including contextual short-term priors, based on isolated temporal situations, and context-independent long-term priors, arising from extended exposure to statistical regularities. While the effects of short-term predictions on auditory perception have been well-documented, how long-term predictions shape early auditory processing is poorly understood. To address this, we recorded magnetoencephalography data from native speakers of two languages with different word orders (Spanish: functor-initial vs Basque: functor-final) listening to simple sequences of binary sounds alternating in duration with occasional omissions. We hypothesized that, together with contextual transition probabilities, the auditory system uses the characteristic prosodic cues (duration) associated with the native language’s word order as an internal model to generate long-term predictions about incoming non-linguistic sounds. Consistent with our hypothesis, we found that the amplitude of the mismatch negativity elicited by sound omissions varied orthogonally depending on the speaker’s linguistic background and was most pronounced in the left auditory cortex. Importantly, listening to binary sounds alternating in pitch instead of duration did not yield group differences, confirming that the above results were driven by the hypothesized long-term ‘duration’ prior. These findings show that experience with a given language can shape a fundamental aspect of human perception – the neural processing of rhythmic sounds – and provides direct evidence for a long-term predictive coding system in the auditory cortex that uses auditory schemes learned over a lifetime to process incoming sound sequences.
-
- Cell Biology
- Neuroscience
Reactive astrocytes play critical roles in the occurrence of various neurological diseases such as multiple sclerosis. Activation of astrocytes is often accompanied by a glycolysis-dominant metabolic switch. However, the role and molecular mechanism of metabolic reprogramming in activation of astrocytes have not been clarified. Here, we found that PKM2, a rate-limiting enzyme of glycolysis, displayed nuclear translocation in astrocytes of EAE (experimental autoimmune encephalomyelitis) mice, an animal model of multiple sclerosis. Prevention of PKM2 nuclear import by DASA-58 significantly reduced the activation of mice primary astrocytes, which was observed by decreased proliferation, glycolysis and secretion of inflammatory cytokines. Most importantly, we identified the ubiquitination-mediated regulation of PKM2 nuclear import by ubiquitin ligase TRIM21. TRIM21 interacted with PKM2, promoted its nuclear translocation and stimulated its nuclear activity to phosphorylate STAT3, NF-κB and interact with c-myc. Further single-cell RNA sequencing and immunofluorescence staining demonstrated that TRIM21 expression was upregulated in astrocytes of EAE. TRIM21 overexpressing in mice primary astrocytes enhanced PKM2-dependent glycolysis and proliferation, which could be reversed by DASA-58. Moreover, intracerebroventricular injection of a lentiviral vector to knockdown TRIM21 in astrocytes or intraperitoneal injection of TEPP-46, which inhibit the nuclear translocation of PKM2, effectively decreased disease severity, CNS inflammation and demyelination in EAE. Collectively, our study provides novel insights into the pathological function of nuclear glycolytic enzyme PKM2 and ubiquitination-mediated regulatory mechanism that are involved in astrocyte activation. Targeting this axis may be a potential therapeutic strategy for the treatment of astrocyte-involved neurological disease.