Training deep neural density estimators to identify mechanistic models of neural dynamics

  1. Pedro J Gonçalves  Is a corresponding author
  2. Jan-Matthis Lueckmann  Is a corresponding author
  3. Michael Deistler  Is a corresponding author
  4. Marcel Nonnenmacher
  5. Kaan Öcal
  6. Giacomo Bassetto
  7. Chaitanya Chintaluri
  8. William F Podlaski
  9. Sara A Haddad
  10. Tim Vogels
  11. David S Greenberg
  12. Jakob H Macke  Is a corresponding author
  1. Center of Advanced European Studies and Research (caesar), Germany
  2. Technical University of Munich, Germany
  3. Mathematical Institute, Germany
  4. University of Oxford, United Kingdom
  5. Max-Planck Institute for Brain Research, Germany
  6. University of Tübingen, Germany

Peer review process

This article was accepted for publication via eLife's original publishing model. eLife publishes the authors' accepted manuscript as a PDF only version before the full Version of Record is ready for publication. Peer reviews are published along with the Version of Record.

History

  1. Version of Record published
  2. Accepted Manuscript updated
  3. Accepted Manuscript published
  4. Accepted
  5. Received

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pedro J Gonçalves
  2. Jan-Matthis Lueckmann
  3. Michael Deistler
  4. Marcel Nonnenmacher
  5. Kaan Öcal
  6. Giacomo Bassetto
  7. Chaitanya Chintaluri
  8. William F Podlaski
  9. Sara A Haddad
  10. Tim Vogels
  11. David S Greenberg
  12. Jakob H Macke
(2020)
Training deep neural density estimators to identify mechanistic models of neural dynamics
eLife 9:e56261.
https://doi.org/10.7554/eLife.56261

Share this article

https://doi.org/10.7554/eLife.56261