Learning-related population dynamics in the auditory thalamus

  1. Ariel Gilad  Is a corresponding author
  2. Ido Maor
  3. Adi Mizrahi
  1. The Hebrew University of Jerusalem, Israel

Abstract

Learning to associate sensory stimuli with a chosen action involves a dynamic interplay between cortical and thalamic circuits. While the cortex has been widely studied in this respect, how the thalamus encodes learning-related information is still largely unknown. We studied learning-related activity in the medial geniculate body (MGB; Auditory thalamus), targeting mainly the dorsal and medial regions. Using fiber photometry, we continuously imaged population calcium dynamics as mice learned a go/no-go auditory discrimination task. The MGB was tuned to frequency and responded to cognitive features like the choice of the mouse within several hundred milliseconds. Encoding of choice in the MGB increased with learning, and was highly correlated with the learning curves of the mice. MGB also encoded motor parameters of the mouse during the task. These results provide evidence that the MGB encodes task- motor- and learning-related information.

Data availability

The data and custom code that support the findings of this study are publicly available at: https://osf.io/mt3bc/.

The following data sets were generated

Article and author information

Author details

  1. Ariel Gilad

    Department of Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel
    For correspondence
    ariel.gilad@mail.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8802-8611
  2. Ido Maor

    Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Adi Mizrahi

    Department of Neurobiology, The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1743-6754

Funding

ERC consolidator grant (#616063)

  • Adi Mizrahi

Israel Science Foundation (#224/17)

  • Adi Mizrahi

Marie Sklodowska-Curie postdoctoral fellowship (659719)

  • Ariel Gilad

Israel Science Foundation (#2453/18)

  • Ariel Gilad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by Institutional Animal Care and Use Committee (IACUC) at the Hebrew University of Jerusalem, Israel (Permit Number: NS-19-15706-4).

Copyright

© 2020, Gilad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,611
    views
  • 381
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ariel Gilad
  2. Ido Maor
  3. Adi Mizrahi
(2020)
Learning-related population dynamics in the auditory thalamus
eLife 9:e56307.
https://doi.org/10.7554/eLife.56307

Share this article

https://doi.org/10.7554/eLife.56307