Transgenesis and web resources in quail

  1. Olivier Serralbo  Is a corresponding author
  2. David Salgado
  3. Nadège Véron
  4. Caitlin Cooper
  5. Marie-Julie Dejardin
  6. Timothy Doran
  7. Jérome Gros  Is a corresponding author
  8. Christophe Marcelle  Is a corresponding author
  1. Monash University, Australia
  2. Aix Marseille University, France
  3. CSIRO Health & Biosecurity, Australia
  4. University of Lyon 1 UCBL, France
  5. Pasteur Institute, CNRS UMR3738, France

Abstract

Due to its amenability to manipulations, to live observation and its striking similarities to mammals, the chicken embryo has been one of the major animal models in biomedical research. Although it is technically possible to genome-edit the chicken, its long generation time (6 months to sexual maturity) makes it an impractical lab model and has prevented it widespread use in research. The Japanese quail (Coturnix coturnix japonica) is an attractive alternative, very similar to the chicken, but with the decisive asset of a much shorter generation time (1.5 months). In recent years, transgenic quail lines have been described. Most of them were generated using replication-deficient lentiviruses, a technique that presents diverse limitations. Here, we introduce a novel technology to perform transgenesis in quail, based on the in vivo transfection of plasmids in circulating Primordial Germ Cells (PGCs). This technique is simple, efficient and allows using the infinite variety of genome engineering approaches developed in other models. Furthermore, we present a website centralizing quail genomic and technological information to facilitate the design of genome-editing strategies, showcase the past and future transgenic quail lines and foster collaborative work within the avian community.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Olivier Serralbo

    Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    For correspondence
    olivier.serralbo@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0808-3464
  2. David Salgado

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Nadège Véron

    Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Caitlin Cooper

    Australian Animal Health Laboratory, CSIRO Health & Biosecurity, Geelong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Marie-Julie Dejardin

    NeuroMyoGene Institute, University of Lyon 1 UCBL, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Timothy Doran

    Australian Animal Health Laboratory, CSIRO Health & Biosecurity, Geelong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Jérome Gros

    Department of Developmental and Stem Cell Biology, Pasteur Institute, CNRS UMR3738, Paris, France
    For correspondence
    jgros@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
  8. Christophe Marcelle

    Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    For correspondence
    christophe.marcelle@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9612-7609

Funding

AFM-Téléthon (Research grant)

  • Christophe Marcelle

Stem Cells Australia (Research grant)

  • Olivier Serralbo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication

Ethics

Animal experimentation: All procedures were approved by a Monash University Animal Ethics Committee (ERM ID 15002, ERM ID 18809) in accordance with the Australian Code for the Care and Use of Animals for Scientific Purposes (8th Edition, 2013).

Copyright

© 2020, Serralbo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,845
    views
  • 374
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olivier Serralbo
  2. David Salgado
  3. Nadège Véron
  4. Caitlin Cooper
  5. Marie-Julie Dejardin
  6. Timothy Doran
  7. Jérome Gros
  8. Christophe Marcelle
(2020)
Transgenesis and web resources in quail
eLife 9:e56312.
https://doi.org/10.7554/eLife.56312

Share this article

https://doi.org/10.7554/eLife.56312

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.