1. Genetics and Genomics
Download icon

Transgenesis and web resources in quail

  1. Olivier Serralbo  Is a corresponding author
  2. David Salgado
  3. Nadège Véron
  4. Caitlin Cooper
  5. Marie-Julie Dejardin
  6. Timothy Doran
  7. Jérome Gros  Is a corresponding author
  8. Christophe Marcelle  Is a corresponding author
  1. Monash University, Australia
  2. Aix Marseille University, France
  3. CSIRO Health & Biosecurity, Australia
  4. University of Lyon 1 UCBL, France
  5. Pasteur Institute, CNRS UMR3738, France
Tools and Resources
  • Cited 3
  • Views 2,081
  • Annotations
Cite this article as: eLife 2020;9:e56312 doi: 10.7554/eLife.56312

Abstract

Due to its amenability to manipulations, to live observation and its striking similarities to mammals, the chicken embryo has been one of the major animal models in biomedical research. Although it is technically possible to genome-edit the chicken, its long generation time (6 months to sexual maturity) makes it an impractical lab model and has prevented it widespread use in research. The Japanese quail (Coturnix coturnix japonica) is an attractive alternative, very similar to the chicken, but with the decisive asset of a much shorter generation time (1.5 months). In recent years, transgenic quail lines have been described. Most of them were generated using replication-deficient lentiviruses, a technique that presents diverse limitations. Here, we introduce a novel technology to perform transgenesis in quail, based on the in vivo transfection of plasmids in circulating Primordial Germ Cells (PGCs). This technique is simple, efficient and allows using the infinite variety of genome engineering approaches developed in other models. Furthermore, we present a website centralizing quail genomic and technological information to facilitate the design of genome-editing strategies, showcase the past and future transgenic quail lines and foster collaborative work within the avian community.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Olivier Serralbo

    Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    For correspondence
    olivier.serralbo@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0808-3464
  2. David Salgado

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Nadège Véron

    Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Caitlin Cooper

    Australian Animal Health Laboratory, CSIRO Health & Biosecurity, Geelong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Marie-Julie Dejardin

    NeuroMyoGene Institute, University of Lyon 1 UCBL, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Timothy Doran

    Australian Animal Health Laboratory, CSIRO Health & Biosecurity, Geelong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Jérome Gros

    Department of Developmental and Stem Cell Biology, Pasteur Institute, CNRS UMR3738, Paris, France
    For correspondence
    jgros@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
  8. Christophe Marcelle

    Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    For correspondence
    christophe.marcelle@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9612-7609

Funding

AFM-Téléthon (Research grant)

  • Christophe Marcelle

Stem Cells Australia (Research grant)

  • Olivier Serralbo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication

Ethics

Animal experimentation: All procedures were approved by a Monash University Animal Ethics Committee (ERM ID 15002, ERM ID 18809) in accordance with the Australian Code for the Care and Use of Animals for Scientific Purposes (8th Edition, 2013).

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: February 24, 2020
  2. Accepted: May 26, 2020
  3. Accepted Manuscript published: May 27, 2020 (version 1)
  4. Version of Record published: June 10, 2020 (version 2)

Copyright

© 2020, Serralbo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,081
    Page views
  • 209
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Carly V Weiss et al.
    Research Article

    The Neanderthal and Denisovan genomes enabled the discovery of sequences that differ between modern and archaic humans, the majority of which are noncoding. However, our understanding of the regulatory consequences of these differences remains limited, in part due to the decay of regulatory marks in ancient samples. Here, we used a massively parallel reporter assay in embryonic stem cells, neural progenitor cells, and bone osteoblasts to investigate the regulatory effects of the 14,042 single-nucleotide modern human-specific variants. Overall, 1791 (13%) of sequences containing these variants showed active regulatory activity, and 407 (23%) of these drove differential expression between human groups. Differentially active sequences were associated with divergent transcription factor binding motifs, and with genes enriched for vocal tract and brain anatomy and function. This work provides insight into the regulatory function of variants that emerged along the modern human lineage and the recent evolution of human gene expression.

    1. Genetics and Genomics
    William R Reay et al.
    Research Article Updated

    Measures of lung function are heritable, and thus, we sought to utilise genetics to propose drug-repurposing candidates that could improve respiratory outcomes. Lung function measures were found to be genetically correlated with seven druggable biochemical traits, with further evidence of a causal relationship between increased fasting glucose and diminished lung function. Moreover, we developed polygenic scores for lung function specifically within pathways with known drug targets and investigated their relationship with pulmonary phenotypes and gene expression in independent cohorts to prioritise individuals who may benefit from particular drug-repurposing opportunities. A transcriptome-wide association study (TWAS) of lung function was then performed which identified several drug–gene interactions with predicted lung function increasing modes of action. Drugs that regulate blood glucose were uncovered through both polygenic scoring and TWAS methodologies. In summary, we provided genetic justification for a number of novel drug-repurposing opportunities that could improve lung function.