1. Genetics and Genomics
Download icon

Transgenesis and web resources in quail

  1. Olivier Serralbo  Is a corresponding author
  2. David Salgado
  3. Nadège Véron
  4. Caitlin Cooper
  5. Marie-Julie Dejardin
  6. Timothy Doran
  7. Jérome Gros  Is a corresponding author
  8. Christophe Marcelle  Is a corresponding author
  1. Monash University, Australia
  2. Aix Marseille University, France
  3. CSIRO Health & Biosecurity, Australia
  4. University of Lyon 1 UCBL, France
  5. Pasteur Institute, CNRS UMR3738, France
Tools and Resources
  • Cited 4
  • Views 2,341
  • Annotations
Cite this article as: eLife 2020;9:e56312 doi: 10.7554/eLife.56312

Abstract

Due to its amenability to manipulations, to live observation and its striking similarities to mammals, the chicken embryo has been one of the major animal models in biomedical research. Although it is technically possible to genome-edit the chicken, its long generation time (6 months to sexual maturity) makes it an impractical lab model and has prevented it widespread use in research. The Japanese quail (Coturnix coturnix japonica) is an attractive alternative, very similar to the chicken, but with the decisive asset of a much shorter generation time (1.5 months). In recent years, transgenic quail lines have been described. Most of them were generated using replication-deficient lentiviruses, a technique that presents diverse limitations. Here, we introduce a novel technology to perform transgenesis in quail, based on the in vivo transfection of plasmids in circulating Primordial Germ Cells (PGCs). This technique is simple, efficient and allows using the infinite variety of genome engineering approaches developed in other models. Furthermore, we present a website centralizing quail genomic and technological information to facilitate the design of genome-editing strategies, showcase the past and future transgenic quail lines and foster collaborative work within the avian community.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Olivier Serralbo

    Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    For correspondence
    olivier.serralbo@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0808-3464
  2. David Salgado

    INSERM, MMG, U1251, Aix Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Nadège Véron

    Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Caitlin Cooper

    Australian Animal Health Laboratory, CSIRO Health & Biosecurity, Geelong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Marie-Julie Dejardin

    NeuroMyoGene Institute, University of Lyon 1 UCBL, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Timothy Doran

    Australian Animal Health Laboratory, CSIRO Health & Biosecurity, Geelong, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Jérome Gros

    Department of Developmental and Stem Cell Biology, Pasteur Institute, CNRS UMR3738, Paris, France
    For correspondence
    jgros@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
  8. Christophe Marcelle

    Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
    For correspondence
    christophe.marcelle@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9612-7609

Funding

AFM-Téléthon (Research grant)

  • Christophe Marcelle

Stem Cells Australia (Research grant)

  • Olivier Serralbo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication

Ethics

Animal experimentation: All procedures were approved by a Monash University Animal Ethics Committee (ERM ID 15002, ERM ID 18809) in accordance with the Australian Code for the Care and Use of Animals for Scientific Purposes (8th Edition, 2013).

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: February 24, 2020
  2. Accepted: May 26, 2020
  3. Accepted Manuscript published: May 27, 2020 (version 1)
  4. Version of Record published: June 10, 2020 (version 2)

Copyright

© 2020, Serralbo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,341
    Page views
  • 221
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Medicine
    Jeremie Gautheron et al.
    Research Article

    Epoxide hydrolases (EHs) regulate cellular homeostasis through hydrolysis of epoxides to less-reactive diols. The first discovered EH was EPHX1, also known as mEH. EH functions remain partly unknown, and no pathogenic variants have been reported in humans. We identified two de novo variants located in EPHX1 catalytic site in patients with a lipoatrophic diabetes characterized by loss of adipose tissue, insulin resistance, and multiple organ dysfunction. Functional analyses revealed that these variants led to the protein aggregation within the endoplasmic reticulum and to a loss of its hydrolysis activity. CRISPR-Cas9-mediated EPHX1 knockout (KO) abolished adipocyte differentiation and decreased insulin response. This KO also promoted oxidative stress and cellular senescence, an observation confirmed in patient-derived fibroblasts. Metreleptin therapy had a beneficial effect in one patient. This translational study highlights the importance of epoxide regulation for adipocyte function and provides new insights into the physiological roles of EHs in humans.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Asli Azizoglu et al.
    Tools and Resources

    Conditional expression of genes and observation of phenotype remain central to biological discovery. Current methods enable either on/off or imprecisely controlled graded gene expression. We developed a 'well-tempered' controller, WTC846, for precisely adjustable, graded, growth condition independent expression of genes in Saccharomyces cerevisiae. Controlled genes are expressed from a strong semisynthetic promoter repressed by the prokaryotic TetR, which also represses its own synthesis; with basal expression abolished by a second, 'zeroing' repressor. The autorepression loop lowers cell-to-cell variation while enabling precise adjustment of protein expression by a chemical inducer. WTC846 allelic strains in which the controller replaced the native promoters recapitulated known null phenotypes (CDC42, TPI1), exhibited novel overexpression phenotypes (IPL1), showed protein dosage-dependent growth rates and morphological phenotypes (CDC28, TOR2, PMA1 and the hitherto uncharacterized PBR1), and enabled cell cycle synchronization (CDC20). WTC846 defines an 'expression clamp' allowing protein dosage to be adjusted by the experimenter across the range of cellular protein abundances, with limited variation around the setpoint.