Abstract

Vanishing White Matter disease (VWM) is a severe leukodystrophy of the central nervous system caused by mutations in subunits of the eukaryotic initiation factor 2B complex (eIF2B). Current models only partially recapitulate key disease features, and pathophysiology is poorly understood. Through development and validation of zebrafish (Danio rerio) models of VWM, we demonstrate that zebrafish eif2b mutants phenocopy VWM, including impaired somatic growth, early lethality, effects on myelination, loss of oligodendrocyte precursor cells, increased apoptosis in the CNS, and impaired motor swimming behavior. Expression of human EIF2B2 in the zebrafish eif2b2 mutant rescues lethality and CNS apoptosis, demonstrating conservation of function between zebrafish and human. In the mutants, intron 12 retention leads to expression of a truncated eif2b5 transcript. Expression of the truncated eif2b5 in wild-type larva impairs motor behavior and activates the ISR, suggesting that a feed-forward mechanism in VWM is a significant component of disease pathophysiology.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3, 4, 5, and 6.

Article and author information

Author details

  1. Matthew D Keefe

    Pediatrics, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  2. Haille E Soderholm

    Pediatrics, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  3. Hung-Yu Shih

    Pediatrics, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  4. Tamara J Stevenson

    Pediatrics, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  5. Kathryn A Glaittli

    Pediatrics, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  6. D Miranda Bowles

    Pediatrics, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  7. Erika Scholl

    Pediatrics, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  8. Samuel Colby

    Bioengineering, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  9. Samer Merchant

    Bioengineering, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  10. Edward W Hsu

    Bioengineering, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  11. Joshua L Bonkowsky

    Pediatrics, University of Utah, Salt Lake City, United States
    For correspondence
    joshua.bonkowsky@hsc.utah.edu
    Competing interests
    Joshua L Bonkowsky, Consultant:Bluebird Bio (5/2017; 10/2017; 11/2019)Calico (1/2018-1/2019)Denali therapeutics (6/2019)Enzyvant (6/2019)Neurogene (3/2020)Board of Directorswfluidx 1/2018-presentStockOrchard Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8775-147X

Funding

National Institutes of Health (1R21 NS109441-01)

  • Joshua L Bonkowsky

University of Utah (Bray Chair)

  • Joshua L Bonkowsky

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish experiments were performed in strict accordance of guidelines from the University of Utah Institutional Animal Care and Use Committee (IACUC), regulated under federal law (the Animal Welfare Act and Public Health Services Regulation Act) by the U.S. Department of Agriculture (USDA) and the Office of Laboratory Animal Welfare at the NIH, and accredited by the Association for Assessment and Accreditation of Laboratory Care International (AAALAC).

Human subjects: Human subjects-related aspects of the study were approved by the Institutional Review Board of the University of Utah and the Privacy Board of Intermountain Healthcare. Informed consent was obtained including consent to publish, protocol #19596.

Copyright

© 2020, Keefe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,831
    views
  • 162
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew D Keefe
  2. Haille E Soderholm
  3. Hung-Yu Shih
  4. Tamara J Stevenson
  5. Kathryn A Glaittli
  6. D Miranda Bowles
  7. Erika Scholl
  8. Samuel Colby
  9. Samer Merchant
  10. Edward W Hsu
  11. Joshua L Bonkowsky
(2020)
Vanishing white matter disease expression of truncated EIF2B5 activates induced stress response
eLife 9:e56319.
https://doi.org/10.7554/eLife.56319

Share this article

https://doi.org/10.7554/eLife.56319

Further reading

    1. Cancer Biology
    2. Medicine
    Anastasia D Komarova, Snezhana D Sinyushkina ... Marina V Shirmanova
    Research Article

    Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients’ tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients’ colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients’ tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.

    1. Medicine
    Sindre Lee-Ødegård, Marit Hjorth ... Kåre Inge Birkeland
    Research Article

    Background:

    Physical activity has been associated with preventing the development of type 2 diabetes and atherosclerotic cardiovascular disease. However, our understanding of the precise molecular mechanisms underlying these effects remains incomplete and good biomarkers to objectively assess physical activity are lacking.

    Methods:

    We analyzed 3072 serum proteins in 26 men, normal weight or overweight, undergoing 12 weeks of a combined strength and endurance exercise intervention. We estimated insulin sensitivity with hyperinsulinemic euglycemic clamp, maximum oxygen uptake, muscle strength, and used MRI/MRS to evaluate body composition and organ fat depots. Muscle and subcutaneous adipose tissue biopsies were used for mRNA sequencing. Additional association analyses were performed in samples from up to 47,747 individuals in the UK Biobank, as well as using two-sample Mendelian randomization and mice models.

    Results:

    Following 12 weeks of exercise intervention, we observed significant changes in 283 serum proteins. Notably, 66 of these proteins were elevated in overweight men and positively associated with liver fat before the exercise regimen, but were normalized after exercise. Furthermore, for 19.7 and 12.1% of the exercise-responsive proteins, corresponding changes in mRNA expression levels in muscle and fat, respectively, were shown. The protein CD300LG displayed consistent alterations in blood, muscle, and fat. Serum CD300LG exhibited positive associations with insulin sensitivity, and to angiogenesis-related gene expression in both muscle and fat. Furthermore, serum CD300LG was positively associated with physical activity and negatively associated with glucose levels in the UK Biobank. In this sample, the association between serum CD300LG and physical activity was significantly stronger in men than in women. Mendelian randomization analysis suggested potential causal relationships between levels of serum CD300LG and fasting glucose, 2 hr glucose after an oral glucose tolerance test, and HbA1c. Additionally, Cd300lg responded to exercise in a mouse model, and we observed signs of impaired glucose tolerance in male, but not female, Cd300lg knockout mice.

    Conclusions:

    Our study identified several novel proteins in serum whose levels change in response to prolonged exercise and were significantly associated with body composition, liver fat, and glucose homeostasis. Serum CD300LG increased with physical activity and is a potential causal link to improved glucose levels. CD300LG may be a promising exercise biomarker and a therapeutic target in type 2 diabetes.

    Funding:

    South-Eastern Norway Regional Health Authority, Simon Fougners Fund, Diabetesforbundet, Johan Selmer Kvanes’ legat til forskning og bekjempelse av sukkersyke. The UK Biobank resource reference 53641. Australian National Health and Medical Research Council Investigator Grant (APP2017942). Australian Research Council Discovery Early Career Award (DE220101226). Research Council of Norway (Project grant: 325640 and Mobility grant: 287198). The Medical Student Research Program at the University of Oslo. Novo Nordisk Fonden Excellence Emerging Grant in Endocrinology and Metabolism 2023 (NNF23OC0082123).

    Clinical trial number:

    clinicaltrials.gov: NCT01803568.