KRAB-zinc finger protein gene expansion in response to active retrotransposons in the murine lineage

  1. Gernot Wolf
  2. Alberto de Iaco
  3. Ming-An Sun
  4. Melania Bruno
  5. Matthew Tinkham
  6. Don Hoang
  7. Apratim Mitra
  8. Sherry Ralls
  9. Didier Trono
  10. Todd S Macfarlan  Is a corresponding author
  1. The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, United States
  2. Ecole Polytechnique Fédérale de Lausanne, Switzerland

Abstract

The Krüppel-associated box zinc finger protein (KRAB-ZFP) family diversified in mammals. The majority of human KRAB-ZFPs bind transposable elements (TEs), however, since most TEs are inactive in humans it is unclear whether KRAB-ZFPs emerged to suppress TEs. We demonstrate that many recently emerged murine KRAB-ZFPs also bind to TEs, including the active ETn, IAP, and L1 families. Using a CRISPR/Cas9-based engineering approach, we genetically deleted five large clusters of KRAB-ZFPs and demonstrate that target TEs are de-repressed, unleashing TE-encoded enhancers. Homozygous knockout mice lacking one of two KRAB-ZFP gene clusters on chromosome 2 and chromosome 4 were nonetheless viable. In pedigrees of chromosome 4 cluster KRAB-ZFP mutants, we identified numerous novel ETn insertions with a modest increase in mutants. Our data strongly support the current model that recent waves of retrotransposon activity drove the expansion of KRAB-ZFP genes in mice and that many KRAB-ZFPs play a redundant role restricting TE activity.

Data availability

All NGS data has been deposited in GEO (GSE115291). Sequences of full-length de novo ETn insertions have been deposited in the GenBank database (MH449667- MH449669).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Gernot Wolf

    The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alberto de Iaco

    School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Ming-An Sun

    The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Melania Bruno

    The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8401-7744
  5. Matthew Tinkham

    The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Don Hoang

    The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Apratim Mitra

    The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sherry Ralls

    The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Didier Trono

    School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3383-0401
  10. Todd S Macfarlan

    The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, United States
    For correspondence
    todd.macfarlan@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2495-9809

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (1ZIAHD008933)

  • Todd S Macfarlan

Swiss National Science Foundation (310030_152879)

  • Didier Trono

Swiss National Science Foundation (310030B_173337)

  • Didier Trono

European Research Council (No. 268721)

  • Didier Trono

European Research Council (No 694658)

  • Didier Trono

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies using mice were performed in accordance to the Guide for the Care and Use of Laboratory Animals of the NIH, under IACUC animal protocol (ASP )18-026.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 6,336
    views
  • 703
    downloads
  • 92
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gernot Wolf
  2. Alberto de Iaco
  3. Ming-An Sun
  4. Melania Bruno
  5. Matthew Tinkham
  6. Don Hoang
  7. Apratim Mitra
  8. Sherry Ralls
  9. Didier Trono
  10. Todd S Macfarlan
(2020)
KRAB-zinc finger protein gene expansion in response to active retrotransposons in the murine lineage
eLife 9:e56337.
https://doi.org/10.7554/eLife.56337

Share this article

https://doi.org/10.7554/eLife.56337

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.