Evolution of multicellularity by collective integration of spatial information

  1. Enrico Sandro Colizzi  Is a corresponding author
  2. Renske MA Vroomans
  3. Roeland MH Merks
  1. Leiden University, Netherlands
  2. University of Amsterdam, Netherlands

Abstract

At the origin of multicellularity, cells may have evolved aggregation in response to predation, for functional specialisation or to allow large-scale integration of environmental cues. These group-level properties emerged from the interactions between cells in a group, and determined the selection pressures experienced by these cells. We investigate the evolution of multicellularity with an evolutionary model where cells search for resources by chemotaxis in a shallow, noisy gradient. Cells can evolve their adhesion to others in a periodically changing environment, where a cell's fitness solely depends on its distance from the gradient source. We show that multicellular aggregates evolve because they perform chemotaxis more efficiently than single cells. Only when the environment changes too frequently, a unicellular state evolves which relies on cell dispersal. Both strategies prevent the invasion of the other through interference competition, creating evolutionary bi-stability. Therefore, collective behaviour can be an emergent selective driver for undifferentiated multicellularity.

Data availability

All data in this study are produced with custom-made software. The source code is freely available at https://github.com/escolizzi/Cell_Evolution_stickymoves

Article and author information

Author details

  1. Enrico Sandro Colizzi

    Mathematical Institute, Leiden University, Leiden, Netherlands
    For correspondence
    e.s.colizzi@math.leidenuniv.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1709-4499
  2. Renske MA Vroomans

    Institute of Informatics, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1353-797X
  3. Roeland MH Merks

    Mathematical Institute and Institute of Biology,, Leiden University, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.

Funding

Nederlands Wetenschap Agenda (StartImpuls)

  • Enrico Sandro Colizzi

Nederlands Wetenschap Agenda (StartImpuls)

  • Renske MA Vroomans

NWO/ENW-VICI (865.17.004)

  • Roeland MH Merks

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymond E Goldstein, University of Cambridge, United Kingdom

Publication history

  1. Received: February 25, 2020
  2. Accepted: October 13, 2020
  3. Accepted Manuscript published: October 16, 2020 (version 1)
  4. Version of Record published: November 9, 2020 (version 2)

Copyright

© 2020, Colizzi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,880
    Page views
  • 569
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Enrico Sandro Colizzi
  2. Renske MA Vroomans
  3. Roeland MH Merks
(2020)
Evolution of multicellularity by collective integration of spatial information
eLife 9:e56349.
https://doi.org/10.7554/eLife.56349

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Nil Z Gurel, Koustubh B Sudarshan ... Olujimi A Ajijola
    Research Article

    Stellate ganglia within the intrathoracic cardiac control system receive and integrate central, peripheral, and cardiopulmonary information to produce postganglionic cardiac sympathetic inputs. Pathological anatomical and structural remodeling occurs within the neurons of the stellate ganglion (SG) in the setting of heart failure. A large proportion of SG neurons function as interneurons whose networking capabilities are largely unknown. Current therapies are limited to targeting sympathetic activity at the cardiac level or surgical interventions such as stellectomy, to treat heart failure. Future therapies that target the stellate ganglion will require understanding of their networking capabilities to modify any pathological remodeling. We observe SG networking by examining cofluctuation and specificity of SG networked activity to cardiac cycle phases. We investigate network processing of cardiopulmonary transduction by SG neuronal populations in porcine with chronic pacing-induced heart failure and control subjects during extended in-vivo extracellular microelectrode recordings. We find that information processing and cardiac control in chronic heart failure by the SG, relative to controls, exhibits: i) more frequent, short-lived, high magnitude cofluctuations, ii) greater variation in neural specificity to cardiac cycles, and iii) neural network activity and cardiac control linkage that depends on disease state and cofluctuation magnitude.

    1. Computational and Systems Biology
    2. Neuroscience
    Sergio Oscar Verduzco-Flores, Erik De Schutter
    Research Article Updated

    How dynamic interactions between nervous system regions in mammals performs online motor control remains an unsolved problem. In this paper, we show that feedback control is a simple, yet powerful way to understand the neural dynamics of sensorimotor control. We make our case using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long connections that are plastic. It succeeds in learning how to perform reaching movements of a planar arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility constraints, like neural implementation, transmission delays, local synaptic learning and continuous online learning. Using differential Hebbian plasticity the model can go from motor babbling to reaching arbitrary targets in less than 10 min of in silico time. Moreover, independently of the learning mechanism, properly configured feedback control has many emergent properties: neural populations in motor cortex show directional tuning and oscillatory dynamics, the spinal cord creates convergent force fields that add linearly, and movements are ataxic (as in a motor system without a cerebellum).