FRET kinase sensor development reveals SnRK2/OST1 activation by ABA but not by MeJA and high CO2 during stomatal closure

  1. Li Zhang
  2. Yohei Takahashi  Is a corresponding author
  3. Po-Kai Hsu
  4. Kollist Hannes
  5. Ebe Merilo
  6. Patrick J Krysan
  7. Julian I Schroeder  Is a corresponding author
  1. University of California, San Diego, United States
  2. University of Tartu, Estonia
  3. University of Wisconsin-Madison, United States

Abstract

Sucrose-non-fermenting-1-related protein kinase-2s (SnRK2s) are critical for plant abiotic stress responses, including abscisic acid (ABA) signaling. Here, we develop a genetically encoded reporter for SnRK2 kinase activity. This sensor, named SNACS, shows an increase in the ratio of yellow to cyan fluorescence emission by OST1/SnRK2.6-mediated phosphorylation of a defined serine residue in SNACS. ABA rapidly increases FRET efficiency in N. benthamiana leaf cells and Arabidopsis guard cells. Interestingly, protein kinase inhibition decreases FRET efficiency in guard cells, providing direct experimental evidence that basal SnRK2 activity prevails in guard cells. Moreover, in contrast to ABA, the stomatal closing stimuli, elevated CO2 and MeJA, did not increase SNACS FRET ratios. These findings and gas exchange analyses of quintuple/sextuple ABA receptor mutants show that stomatal CO2 signaling requires basal ABA and SnRK2 signaling, but not SnRK2 activation. A recent model that CO2 signaling is mediated by PYL4/PYL5 ABA-receptors could not be supported here in two independent labs. We report a potent approach for real-time live-cell investigations of stress signaling.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Li Zhang

    Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yohei Takahashi

    Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, United States
    For correspondence
    ytakahashi@UCSD.EDU
    Competing interests
    The authors declare that no competing interests exist.
  3. Po-Kai Hsu

    Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kollist Hannes

    Institute of Technology, University of Tartu, Tartu, Estonia
    Competing interests
    The authors declare that no competing interests exist.
  5. Ebe Merilo

    Institute of Technology, University of Tartu, Tartu, Estonia
    Competing interests
    The authors declare that no competing interests exist.
  6. Patrick J Krysan

    Horticulture Department, University of Wisconsin-Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Julian I Schroeder

    Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, La Jolla, United States
    For correspondence
    jischroeder@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3283-5972

Funding

National Science Foundation (MCB-1900567)

  • Julian I Schroeder

National Institutes of Health (GM060396)

  • Julian I Schroeder

China Scholarship Council

  • Li Zhang

Japan Society for the Promotion of Science

  • Yohei Takahashi

Eesti Teadusagentuur (PUT1133)

  • Kollist Hannes

Eesti Teadusagentuur (PRG719)

  • Kollist Hannes

Eesti Teadusagentuur (PRG433)

  • Kollist Hannes

European Regional Development Fund

  • Ebe Merilo

National Science Foundation (MCB‐1137950)

  • Po-Kai Hsu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,661
    views
  • 905
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.56351

Further reading

    1. Plant Biology
    Maryam Rahmati Ishka, Hayley Sussman ... Magdalena M Julkowska
    Research Article

    Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study’s innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.

    1. Cell Biology
    2. Plant Biology
    Baihong Zhang, Shuqin Huang ... Wenli Chen
    Research Article

    Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.