Therapeutic effects of anodal transcranial direct current stimulation in a rat model of ADHD

  1. Da Hee Jung
  2. Sung Min Ahn
  3. Malk Eun Pak
  4. Hong Ju Lee
  5. Young Jin Jung
  6. Kibong Kim
  7. Yong-Il Shin
  8. Hwa Kyoung Shin
  9. Byung Tae Choi  Is a corresponding author
  1. Pusan National University, Republic of Korea
  2. Dongseo University, Republic of Korea

Abstract

Most therapeutic candidates for treating attention deficit hyperactivity disorder (ADHD) have focused on modulating the dopaminergic neurotransmission system with neurotrophic factors. Regulation of this system by transcranial direct current stimulation (tDCS) could contribute to the recovery of cognitive symptoms observed in patients with ADHD. Here, male spontaneously hypertensive (SHR) rats were subjected to consecutive high-definition tDCS (HD-tDCS) (20 min, 50 μA, current density 63.7 A/m2, charge density 76.4 kC/m2) over the prefrontal cortex. This treatment alleviated cognitive deficits, with an increase in tyrosine hydroxylase and vesicular monoamine transporter 2 and significantly decreased plasma membrane reuptake transporter (DAT). HD-tDCS application increased the expression of several neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF), and activated hippocampal neurogenesis. Our results suggest that anodal HD-tDCS over the prefrontal cortex may ameliorate cognitive dysfunction via regulation of DAT and BDNF in the mesocorticolimbic dopaminergic pathways, and therefore represents a potential adjuvant therapy for ADHD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures and Tables

Article and author information

Author details

  1. Da Hee Jung

    Department of Korean Medical Science, Pusan National University, Yangsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Sung Min Ahn

    Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Malk Eun Pak

    Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Hong Ju Lee

    Department of Korean Medical Science, Pusan National University, Yangsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Young Jin Jung

    Department of Radiological Science, Dongseo University, Busan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Kibong Kim

    Department of Korean Pediatrics, Pusan National University, Yangsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5724-4653
  7. Yong-Il Shin

    Department of Rehabilitation Medicine, Pusan National University, Yangsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  8. Hwa Kyoung Shin

    Department of Korean Medical Science, Pusan National University, Yangsan, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Byung Tae Choi

    Department of Korean Medical Science, Pusan National University, Yangsan, Republic of Korea
    For correspondence
    choibt@pusan.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5965-4346

Funding

National Research Foundation of Korea (2018R1A2A2A05018926)

  • Byung Tae Choi

National Research Foundation of Korea (2014R1A5A2009936)

  • Byung Tae Choi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the Pusan National University Animal Care and Use Committee and were performed in accordance with the National Institutes of Health Guidelines (PNU-2018-1932)

Copyright

© 2020, Jung et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,043
    views
  • 305
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Da Hee Jung
  2. Sung Min Ahn
  3. Malk Eun Pak
  4. Hong Ju Lee
  5. Young Jin Jung
  6. Kibong Kim
  7. Yong-Il Shin
  8. Hwa Kyoung Shin
  9. Byung Tae Choi
(2020)
Therapeutic effects of anodal transcranial direct current stimulation in a rat model of ADHD
eLife 9:e56359.
https://doi.org/10.7554/eLife.56359

Share this article

https://doi.org/10.7554/eLife.56359

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.