Presynaptic APP levels and synaptic homeostasis are regulated by Akt phosphorylation of Huntingtin

Abstract

Studies have suggested that amyloid precursor protein (APP) regulates synaptic homeostasis, but the evidence has not been consistent. In particular, signaling pathways controlling APP transport to the synapse in axons and dendrites remain to be identified. Having previously shown that Huntingtin (HTT), the scaffolding protein involved in Huntington's disease, regulates neuritic transport of APP, we used a microfluidic corticocortical neuronal network-on-a-chip to examine APP transport and localization to the pre- and post-synaptic compartments. We found that HTT, upon phosphorylation by the Ser/Thr kinase Akt, regulates APP transport in axons but not dendrites. Expression of an unphosphorylatable HTT decreased axonal anterograde transport of APP, reduced presynaptic APP levels, and increased synaptic density. Ablating in vivo HTT phosphorylation in APPPS1 mice, which overexpress APP, reduced presynaptic APP levels, restored synapse number and improved learning and memory. The Akt-HTT pathway and axonal transport of APP thus regulate APP presynaptic levels and synapse homeostasis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Julie Bruyère

    INSERM U1216, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    No competing interests declared.
  2. Yah-Se Abada

    Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
  3. Hélène Marine Vitet

    INSERM U1216, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    No competing interests declared.
  4. Gaëlle Fontaine

    Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
  5. Jean-Christophe Deloulme

    Inserm U 1216 Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2234-5865
  6. Aurélia Cès

    Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
  7. Eric Denarier

    Inserm U 1216 Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4169-397X
  8. Karin Pernet-Gallay

    INSERM U1216, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    No competing interests declared.
  9. Annie Andrieux

    Inserm U1216, CEA, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4022-6405
  10. Sandrine Humbert

    INSERM U1216, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    Competing interests
    No competing interests declared.
  11. Marie-Claude Potier

    Inserm U1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
    Competing interests
    No competing interests declared.
  12. Benoît Delatour

    Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
    Competing interests
    No competing interests declared.
  13. Frédéric Saudou

    INSERM U1216, Grenoble Institut Neurosciences, University Grenoble Alpes, Grenoble, France
    For correspondence
    frederic.saudou@inserm.fr
    Competing interests
    Frédéric Saudou, is on the scientific advisory board of Servier (Neurosciences Department) and a consultant for TEVA and Wave Life Sciences. The other authors declare that they have no competing interests..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6107-1046

Funding

Agence Nationale de la Recherche (ANR-12-MALZ-0004 HuntAbeta)

  • Frédéric Saudou

Agence Nationale de la Recherche (ANR-15-IDEX-02 NeuroCoG)

  • Frédéric Saudou

Agence Nationale de la Recherche (ANR-10-IAIHU-06)

  • Marie-Claude Potier

Fondation pour la Recherche Médicale (DEQ20170336752)

  • Sandrine Humbert

Fondation pour la Recherche Médicale (FDT201904008035)

  • Hélène Marine Vitet

Fondation pour la Recherche Médicale (DEI20151234418)

  • Frédéric Saudou

Fondation pour la Recherche sur le Cerveau

  • Frédéric Saudou

INSERM (AGEMED)

  • Frédéric Saudou

Fondation Bettencourt Schueller

  • Frédéric Saudou

Association Huntington France

  • Hélène Marine Vitet

Agence Nationale de la Recherche (ANR-12-MALZ-0004 HuntAbeta)

  • Marie-Claude Potier

INSERM (AGEMED)

  • Sandrine Humbert

Agence Nationale de la Recherche (ANR-14-CE35-0027-01 PASSAGE)

  • Frédéric Saudou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were held in accordance with the French Animal Welfare Act and the EU legislation (Council Directive 86/609/EEC) and the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines. The French Ministry of Agriculture and the local ethics committee gave specific authorization (authorization no. 04594.02) to BD to conduct the experiments described in the present study.

Copyright

© 2020, Bruyère et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,176
    views
  • 350
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julie Bruyère
  2. Yah-Se Abada
  3. Hélène Marine Vitet
  4. Gaëlle Fontaine
  5. Jean-Christophe Deloulme
  6. Aurélia Cès
  7. Eric Denarier
  8. Karin Pernet-Gallay
  9. Annie Andrieux
  10. Sandrine Humbert
  11. Marie-Claude Potier
  12. Benoît Delatour
  13. Frédéric Saudou
(2020)
Presynaptic APP levels and synaptic homeostasis are regulated by Akt phosphorylation of Huntingtin
eLife 9:e56371.
https://doi.org/10.7554/eLife.56371

Share this article

https://doi.org/10.7554/eLife.56371

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.