Alternative splicing of coq-2 controls the levels of rhodoquinone in animals

  1. June H Tan
  2. Margot Lautens
  3. Laura Romanelli-Cedrez
  4. Jianbin Wang
  5. Michael R Schertzberg
  6. Samantha R Reinl
  7. Richard E Davis
  8. Jennifer N Shepherd  Is a corresponding author
  9. Andrew G Fraser  Is a corresponding author
  10. Gustavo Salinas  Is a corresponding author
  1. The Donnelly Centre, University of Toronto, Canada
  2. Laboratorio de Biología de Gusanos. Unidad Mixta, Departamento de Biociencias, Facultad de Química, Universidad de la República - Institut Pasteur de Montevideo, Uruguay
  3. Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, United States
  4. Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, United States
  5. Department of Chemistry and Biochemistry, Gonzaga University, United States
7 figures, 1 table and 4 additional files

Figures

Rhodoquinone and ubiquinone biosynthesis and function in electron transport chains.

(A) In aerobic metabolism, ubiquinone (UQ) shuttles electrons in the ETC from Complex I (CI; yellow box) and quinone-coupled dehydrogenases (QDHs), such as Complex II. These electrons are ultimately …

C. elegans coq-2 gene model.

(A) The coq-2 gene contains two mutually exclusive exons, 6e (blue box) and 6a (red box), that are alternatively spliced (blue and red lines, respectively) generating two COQ-2 isoforms. Light gray …

Gene models for coq-2 orthologs in various species.

Parasitic helminths, as well as annelids and mollusks, have two internal exons that are spliced in a mutually exclusive manner. By contrast, humans and other hosts only have one exon that is …

Conserved changes between a- and e-form exons across RQ-producing species.

Amino acid sequences of COQ-2 orthologs were aligned using Clustal Omega (Madeira et al., 2019). The sequences of exons homologous to exon 6a/e in C. elegans, as well as the flanking five amino acid …

Figure 5 with 1 supplement
The C. elegans coq-2 edited strains and effects of exon 6a and 6e deletions on quinone biosynthesis.

(A) Mutant strains were generated in C. elegans by deletion of exon 6a (coq-2∆6a) or exon 6e (coq-2∆6e). (B) Deletion of exon 6a from the coq-2 gene significantly increased the level of RQ9

Figure 5—figure supplement 1
Deletion of coq-2 exon 6e affects the ability of worms to survive extended KCN treatment at various KCN concentrations.

Wild-type (N2), coq-2 and kynu-1(e1003) mutant L1 worms were exposed to 150–500 µM KCN for 15 hr. KCN was then diluted 6-fold and worm movement was measured over 3 hr to track recovery from KCN …

Correlation of COQ-2 splicing with change from aerobic to anaerobic life stages.

(A) Schematic of the life cycle of A. suum. ‘OUT’ denotes aerobically respiring free-living stages; ‘IN’ indicates stages living inside the host intestine. (B) Graph indicates the percentage of all …

Discrimination between RQ and UQ biosynthesis in C.

elegans. There are two variants of exon 6 in the C. elegans coq-2 gene (6a and 6e) which undergo mutually exclusive alternative splicing leading to COQ-2a and COQ-2e isoforms, respectively. …

Tables

Key resources table
Reagent type
(species) or resource
DesignationSource or referenceIdentifiersAdditional
information
Gene (Caenorhabditis elegans) coq-2WormBaseWBGene00000762
Strain, strain background
(Caenorhabditis elegans)
N2Caenorhabditis Genetics Center (CGC)N2Wild-type
Strain, strain background
(Caenorhabditis elegans)
coq-2 (syb1715)This paperPHX1715coq-2∆6a
Supplementary file 1
Strain, strain background
(Caenorhabditis elegans)
 coq-2 (syb1721)This paperPHX1721coq-2∆6e
Supplementary file 1
Strain, strain background (Escherichia coli)OP50Caenorhabditis Genetics Center (CGC)OP50
Sequence-based reagentsgRNAs used in this studyThis paperSupplementary file 1
Sequence-based reagentPCR primers used in this studyThis paperSupplementary file 1
Chemical compound, drugPotassium cyanide (KCN)Sigma-Aldrich60178–25GStock solution: 50 mM in PBS buffer
OtherHexane, HPLC gradeSigma-Aldrich650552–1L
OtherAcetonitrile, LC-MS gradeFisher ScientificA955-4
OtherUbiquinone-3 standardCampbell et al., 2019
OtherUbiquinone-9 standardSigma-Aldrich27597–1 MG
OtherRhodoquinone-9 standardRoberts Buceta et al., 2019Isolated from Ascaris suum
Software, algorithmWhippetSterne-Weiler et al., 2018RRID:SCR_018349https://github.com/timbitz/Whippet.jl
Software, algorithmHISAT2Kim et al., 2019RRID:SCR_015530https://daehwankimlab.github.io/hisat2/
Software, algorithmUCSF ChimeraResource for Biocomputing Visualization and Informatics Pettersen et al., 2004RRID:SCR_004097http://plato.cgl.ucsf.edu/chimera/
Software, algorithmMODELLERUniversity of California at San Francisco Webb and Sali, 2016RRID:SCR_008395https://salilab.org/modeller/
Software, algorithmImage analysis pipelineSpensley et al., 2018https://github.com/fraser-lab-UofT/acute_assay
Software, algorithmPythonPythonRRID:SCR_008394https://www.python.org/
Software, algorithmNIS-ElementsNikonRRID:SCR_014329https://www.microscope.healthcare.nikon.com/products/software/nis-elements
Software, algorithmImageMagickImageMagickRRID:SCR_014491https://imagemagick.org/
Software, algorithmBioFormatsOME - Open Microscopy EnvironmentRRID:SCR_000450https://docs.openmicroscopy.org/bio-formats/5.7.1/users/comlinetools/index.html

Additional files

Download links